TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank
Abstract
Learning-to-Rank deals with maximizing the utility of a list of examples presented to the user, with items of higher relevance being prioritized. It has several practical applications such as large-scale search, recommender systems, document summarization and question answering. While there is widespread support for classification and regression based learning, support for learning-to-rank in deep learning has been limited.
We propose TensorFlow Ranking, the first open source library for solving large-scale ranking problems in a deep learning framework. It is highly configurable and provides easy-to-use APIs to support different scoring mechanisms, loss functions and evaluation metrics in the learning-to-rank setting. Our library is developed on top of TensorFlow and can thus fully leverage the advantages of this platform. For example, it is highly scalable, both in training and in inference, and can be used to learn ranking models over massive amounts of user activity data, which can include heterogeneous dense and sparse features. We empirically demonstrate the effectiveness of our library in learning ranking functions for large-scale search and recommendation applications in Gmail and Google Drive. We also show that ranking models built using our model scale well for distributed training, without significant impact in metrics. The proposed library is available to the open source community, with the hope that it facilitates further academic research and industrial applications in the field of learning-to-rank.
We propose TensorFlow Ranking, the first open source library for solving large-scale ranking problems in a deep learning framework. It is highly configurable and provides easy-to-use APIs to support different scoring mechanisms, loss functions and evaluation metrics in the learning-to-rank setting. Our library is developed on top of TensorFlow and can thus fully leverage the advantages of this platform. For example, it is highly scalable, both in training and in inference, and can be used to learn ranking models over massive amounts of user activity data, which can include heterogeneous dense and sparse features. We empirically demonstrate the effectiveness of our library in learning ranking functions for large-scale search and recommendation applications in Gmail and Google Drive. We also show that ranking models built using our model scale well for distributed training, without significant impact in metrics. The proposed library is available to the open source community, with the hope that it facilitates further academic research and industrial applications in the field of learning-to-rank.