Sandwiched Image Compression: Wrapping Neural Networks Around a Standard Codec

Phil Chou
Hugues Hoppe
Danhang "Danny" Tang
Philip Davidson
2021 IEEE International Conference on Image Processing (ICIP), IEEE, Anchorage, Alaska, pp. 3757-3761

Abstract

We sandwich a standard image codec between two neural networks: a preprocessor that outputs neural codes, and a postprocessor that reconstructs the image. The neural codes are compressed as ordinary images by the standard codec. Using differentiable proxies for both rate and distortion, we develop a rate-distortion optimization framework that trains the networks to generate neural codes that are efficiently compressible as images. This architecture not only improves rate-distortion performance for ordinary RGB images, but also enables efficient compression of alternative image types (such as normal maps of computer graphics) using standard image codecs. Results demonstrate the effectiveness and flexibility of neural processing in mapping a variety of input data modalities to the rigid structure of standard codecs. A surprising result is that the rate-distortion-optimized neural processing seamlessly learns to transport color images using a single-channel (grayscale) codec.