Random Classification Noise does not defeat All Convex Potential Boosters Irrespective of Model Choice

Robert C. Williamson
ICML 2023 (2023)

Abstract

A landmark negative result of Long and Servedio established a worst-case spectacular failure of a supervised learning trio (loss, algorithm, model) otherwise praised for its high precision machinery. Hundreds of papers followed up on the two suspected culprits: the loss (for being convex) and/or the algorithm (for fitting a classical boosting blueprint). Here, we call to the half-century+ founding theory of losses for class probability estimation (properness), an extension of Long and Servedio's results and a new general boosting algorithm to demonstrate that the real culprit in their specific context was in fact the (linear) model class. We advocate for a more general stanpoint on the problem as we argue that the source of the negative result lies in the dark side of a pervasive -- and otherwise prized -- aspect of ML: \textit{parameterisation}.

Research Areas