Metrics-only Training Neural Network for Switching among an Array of Feedback Controllers for Bicycle Model Navigation
Abstract
The paper proposes a novel training approach for a neural network to perform switching among an array of computationally generated stochastic optimal feedback controllers. The training is based on the outputs of off-line computed lookup-table metric (LTM) values that store information about individual controller performances. Our study is based on a problem of bicycle kinematic model navigation through a sequence of gates and a more traditional approach to the training is based on kinematic variables (KVs) describing the bicycle-gate relative position. We compare the LTM and KV based training approaches to the navigation problem and find that the LTM training has a faster convergence with less variations than the KV based training. Our results include numerical simulations illustrating the work of the LTM trained neural network switching policy.