Hierarchical Text Spotter for Joint Text Spotting and Layout Analysis

Winter Conference on Applications of Computer Vision 2024 (2024) (to appear)

Abstract

We propose Hierarchical Text Spotter (HTS), the first method for the joint task of word-level text spotting and geometric layout analysis.
HTS can annotate text in images with a hierarchical representation of 4 levels: character, word, line, and paragraph.
The proposed HTS is characterized by two novel components:
(1) a Unified-Detector-Polygon (UDP) that produces Bezier Curve polygons of text lines and an affinity matrix for paragraph grouping between detected lines;
(2) a Line-to-Character-to-Word (L2C2W) recognizer that splits lines into characters and further merges them back into words.
HTS achieves state-of-the-art results on multiple word-level text spotting benchmark datasets as well as geometric layout analysis tasks.
Code will be released upon acceptance.

Research Areas