Fair Hierarchical Clustering

Google Scholar

Abstract

As machine learning has become more and more integrated into our businesses and lifestyles, researchers have begun to recognize the necessity of ensuring machine learning systems are fair. Recently, there has been an interest in defining a notion of fairness that mitigates over-representation in traditional clustering.

In this paper we extend this notion to hierarchical clustering, where the goal is to recursively partition the data to optimize a certain objective~\cite{dasgupta}. For various natural objectives, we obtain simple, efficient algorithms to find a provably good fair hierarchical clustering. Empirically, we show that our algorithms can find a fair hierarchical clustering, surprisingly, with only a negligible loss in the objective.