Contextual Recovery of Out-of-Lattice Named Entities in Automatic Speech Recognition
Abstract
As voice-driven intelligent assistants become commonplace, adaptation to user context becomes critical for Automatic Speech Recognition (ASR) systems. For example, ASR systems may be expected to recognize a user’s contact names containing improbable or out-of-vocabulary (OOV) words.
We introduce a method to identify contextual cues in a firstpass ASR system’s output and to recover out-of-lattice hypotheses that are contextually relevant. Our proposed module is agnostic to the architecture of the underlying recognizer, provided it generates a word lattice of hypotheses; it is sufficiently compact for use on device. The module identifies subgraphs in the lattice likely to contain named entities (NEs), recovers phoneme hypotheses over corresponding time spans, and inserts NEs that are phonetically close to those hypotheses. We measure a decrease in the mean word error rate (WER) of word lattices from 11.5% to 4.9% on a test set of NEs.
We introduce a method to identify contextual cues in a firstpass ASR system’s output and to recover out-of-lattice hypotheses that are contextually relevant. Our proposed module is agnostic to the architecture of the underlying recognizer, provided it generates a word lattice of hypotheses; it is sufficiently compact for use on device. The module identifies subgraphs in the lattice likely to contain named entities (NEs), recovers phoneme hypotheses over corresponding time spans, and inserts NEs that are phonetically close to those hypotheses. We measure a decrease in the mean word error rate (WER) of word lattices from 11.5% to 4.9% on a test set of NEs.