A lightweight, calibrated simulation that enables efficient offline learning for optimal control of real buildings

BuildSys 2023 (2023)

Abstract

Modern commercial Heating, Ventilation, and Air Conditioning (HVAC) devices form a complex and interconnected thermodynamic system with the building and outside weather conditions,
and current setpoint control policies are not fully optimized for minimizing energy use and carbon emission. Given a suitable training environment, a Reinforcement Learning (RL) model is able to improve upon these policies, but training such a model, especially in a way that scales to thousands of buildings, presents many real-world challenges. We propose a novel simulation-based approach,where a customized simulator is used to train the agent for each building. Our open-source simulator is lightweight and calibrated via telemetry from the building to reach a higher level of fidelity. On a two-story, 68,000 square foot building, with 127 devices, we were able to calibrate our simulator to have just over half a degree of drift from the real world over a six-hour interval. This approach is an important step toward having a real-world RL control system that can be scaled to many buildings, allowing for greater efficiency and resulting in reduced energy consumption and carbon emissions.

Research Areas