Jump to Content

Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Publications

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 1327 publications
    Conformal Risk Control
    Anastasios N. Angelopoulos
    Stephen Bates
    Adam Fisch
    Lihua Lei
    ICLR (2024) (to appear)
    Preview abstract We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score. View details
    Preview abstract Effective model calibration is a critical and indispensable component in developing Media Mix Models (MMMs). One advantage of Bayesian-based MMMs lies in their capacity to accommodate the information from experiment results and the modelers' domain knowledge about the ad effectiveness by setting priors for the model parameters. However, it remains ambiguous about how and which Bayesian priors should be tuned for calibration purpose. In this paper, we propose a new calibration method through model reparameterization. The reparameterized model includes Return on Ads Spend (ROAS) as a model parameter, enabling straightforward adjustment of its prior distribution to align with either experiment results or the modeler's prior knowledge. The proposed method also helps address several key challenges regarding combining MMMs and incrementality experiments. We use simulations to demonstrate that our approach can significantly reduce the bias and uncertainty in the resultant posterior ROAS estimates. View details
    Preview abstract Online navigation platforms are well optimized to solve for the standard objective of minimizing the travel time and typically require precomputation-based architectures (such as Contraction Hierarchies and the Customizable Route Planning) to do so in a fast manner. The reason for this dependence is the size of the graph that represents the road network, which is large. The need to go beyond minimizing the travel time and introduce various types of customizations has led to approaches that rely on alternative route computation or, more generally, small subgraph extraction. On a small subgraph, one is able to run computationally expensive algorithms at query time and compute optimal solutions for multiple routing problems. In this framework, it is critical for the subgraph to a) be small and b) include (near) optimal routes for a collection of customizations. This is precisely the setting that we study in this work. We design algorithms that extract a subgraph connecting designated terminals with the objective to minimize the subgraph's size and the constraint to include near optimal routes for a set of predefined cost functions. We provide theoretical guarantees for our algorithms and evaluate them empirically using real world road networks. View details
    Preview abstract Algorithms for the computation of alternative routes in road networks power many geographic navigation systems. A good set of alternative routes offers meaningful options to the user of the system and can support applications such as routing that is robust to failures (e.g., road closures, extreme traffic congestion, etc.) and routing with diverse preferences and objective functions. Algorithmic techniques for alternative route computation include the penalty method, via-node type algorithms (which deploy bidirectional search and finding plateaus), and, more recently, electrical-circuit based algorithms. In this work we focus on the practically important family of via-node type algorithms and we aim to produce high quality alternative routes for road netowrks. We study alternative route computation in the presence of a fast routing infrastructure that relies on hierarchical routing (namely, CRP). We propose new approaches that rely on deep learning methods. Our training methodology utilizes the hierarchical partition of the graph and builds models to predict which boundary road segments in the partition should be crossed by the alternative routes. We describe our methods in detail and evaluate them against the previously studied architectures, as well as against a stronger baseline that we define in this work, showing improvements in quality in the road networks of Seattle, Paris, and Bangalore. View details
    First Passage Percolation with Queried Hints
    Kritkorn Karntikoon
    Aaron Schild
    Yiheng Shen
    Ali Sinop
    AISTATS (2024)
    Preview abstract Optimization problems are ubiquitous throughout the modern world. In many of these applications, the input is inherently noisy and it is expensive to probe all of the noise in the input before solving the relevant optimization problem. In this work, we study how much of that noise needs to be queried in order to obtain an approximately optimal solution to the relevant problem. We focus on the shortest path problem in graphs, where one may think of the noise as coming from real-time traffic. We consider the following model: start with a weighted base graph $G$ and multiply each edge weight by an independently chosen, uniformly random number in $[1,2]$ to obtain a random graph $G'$. This model is called \emph{first passage percolation}. Mathematicians have studied this model extensively when $G$ is a $d$-dimensional grid graph, but the behavior of shortest paths in this model is still poorly understood in general graphs. We make progress in this direction for a class of graphs that resembles real-world road networks. Specifically, we prove that if the geometric realization of $G$ has constant doubling dimension, then for a given $s-t$ pair, we only need to probe the weights on $((\log n) / \epsilon)^{O(1)}$ edges in $G'$ in order to obtain a $(1 + \epsilon)$-approximation to the $s-t$ distance in $G'$. We also demonstrate experimentally that this result is pessimistic -- one can even obtain a short path in $G'$ with a small number of probes to $G'$. View details
    Network Flow Problems with Electric Vehicles
    Haripriya Pulyassary
    Aaron Schild
    David Shmoys
    Manxi Wu
    IPCO (2024)
    Preview abstract Electric vehicle (EV) adoption in long-distance logistics faces challenges like range anxiety and uneven distribution of charging stations. Two pivotal questions emerge: How can EVs be efficiently routed in a charging network considering range limits, charging speeds and prices And, can the existing charging infrastructure sustain the increasing demand for EVs in long-distance logistics? This paper addresses these questions by introducing a novel theoretical and computational framework to study the EV network flow problems. We present an EV network flow model that incorporates range restrictions and nonlinear charging rates, and identify conditions under which polynomial-time solutions can be obtained for optimal single EV routing, maximum flow, and minimum cost flow problems. We develop efficient computational methods for computing the optimal routing and flow vector using a novel graph augmentation technique. Our findings provide insights for optimizing EV routing in logistics, ensuring an efficient and sustainable future. View details
    Data Exchange Markets via Utility Balancing
    Aditya Bhaskara
    Sungjin Im
    Kamesh Munagala
    Govind S. Sankar
    WebConf (2024)
    Preview abstract This paper explores the design of a balanced data-sharing marketplace for entities with heterogeneous datasets and machine learning models that they seek to refine using data from other agents. The goal of the marketplace is to encourage participation for data sharing in the presence of such heterogeneity. Our market design approach for data sharing focuses on interim utility balance, where participants contribute and receive equitable utility from refinement of their models. We present such a market model for which we study computational complexity, solution existence, and approximation algorithms for welfare maximization and core stability. We finally support our theoretical insights with simulations on a mean estimation task inspired by road traffic delay estimation. View details
    Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
    Alizée Pace
    Hugo Yèche
    Bernhard Schölkopf
    Gunnar Rätsch
    The Twelfth International Conference on Learning Representations (2024)
    Preview abstract A prominent challenge of offline reinforcement learning (RL) is the issue of hidden confounding. There, unobserved variables may influence both the actions taken by the agent and the outcomes observed in the data. Hidden confounding can compromise the validity of any causal conclusion drawn from the data and presents a major obstacle to effective offline RL. In this paper, we tackle the problem of hidden confounding in the nonidentifiable setting. We propose a definition of uncertainty due to confounding bias, termed delphic uncertainty, which uses variation over compatible world models, and differentiate it from the well known epistemic and aleatoric uncertainties. We derive a practical method for estimating the three types of uncertainties, and construct a pessimistic offline RL algorithm to account for them. Our method does not assume identifiability of the unobserved confounders, and attempts to reduce the amount of confounding bias. We demonstrate through extensive experiments and ablations the efficacy of our approach on a sepsis management benchmark, as well as real electronic health records. Our results suggest that nonidentifiable confounding bias can be addressed in practice to improve offline RL solutions. View details
    Preview abstract Many geographic information systems applications rely on the data provided by user devices in the road network. Such applications include traffic monitoring, driving navigation, detecting road closures or the construction of new roads, etc. This signal is collected by sampling locations from the user trajectories and is a critical process for all such systems. Yet, it has not been sufficiently studied in the literature. The most natural way to sample a trajectory is perhaps using a frequency based algorithm, e.g., sample every $x$ seconds. However, as we argue in this paper, such a simple strategy can be very wasteful in terms of resources (e.g., server-side processing, user battery) and in terms of the amount of user data that it maintains. In this work we conduct a horizontal study of various location sampling algorithms (including frequency-based, road geography-based, reservoir-sampling based, etc.) and extract their trade-offs in terms of various metrics of interest, such as, the size of the stored data and the induced quality of training for prediction tasks (e.g., predicting speeds) using the road network of New York City. View details
    Solving olympiad geometry without human demonstrations
    Trieu Trinh
    Yuhuai Tony Wu
    He He
    Nature, vol. 625 (2024), pp. 476-482
    Preview abstract Proving mathematical theorems at the olympiad level represents a notable milestone in human-level automated reasoning, owing to their reputed difficulty among the world’s best talents in pre-university mathematics. Current machine-learning approaches, however, are not applicable to most mathematical domains owing to the high cost of translating human proofs into machine-verifiable format. The problem is even worse for geometry because of its unique translation challenges, resulting in severe scarcity of training data. We propose AlphaGeometry, a theorem prover for Euclidean plane geometry that sidesteps the need for human demonstrations by synthesizing millions of theorems and proofs across different levels of complexity. AlphaGeometry is a neuro-symbolic system that uses a neural language model, trained from scratch on our large-scale synthetic data, to guide a symbolic deduction engine through infinite branching points in challenging problems. On a test set of 30 latest olympiad-level problems, AlphaGeometry solves 25, outperforming the previous best method that only solves ten problems and approaching the performance of an average International Mathematical Olympiad (IMO) gold medallist. Notably, AlphaGeometry produces human-readable proofs, solves all geometry problems in the IMO 2000 and 2015 under human expert evaluation and discovers a generalized version of a translated IMO theorem in 2004. View details
    Sandwiched Compression: Repurposing Standard Codecs with Neural Network Wrappers
    Phil A. Chou
    Berivan Isik
    Hugues Hoppe
    Danhang Tang
    Jonathan Taylor
    Philip Davidson
    arXiv:2402.05887 (2024)
    Preview abstract We propose sandwiching standard image and video codecs between pre- and post-processing neural networks. The networks are jointly trained through a differentiable codec proxy to minimize a given rate-distortion loss. This sandwich architecture not only improves the standard codec’s performance on its intended content, it can effectively adapt the codec to other types of image/video content and to other distortion measures. Essentially, the sandwich learns to transmit “neural code images” that optimize overall rate-distortion performance even when the overall problem is well outside the scope of the codec’s design. Through a variety of examples, we apply the sandwich architecture to sources with different numbers of channels, higher resolution, higher dynamic range, and perceptual distortion measures. The results demonstrate substantial improvements (up to 9 dB gains or up to 3 adaptations. We derive VQ equivalents for the sandwich, establish optimality properties, and design differentiable codec proxies approximating current standard codecs. We further analyze model complexity, visual quality under perceptual metrics, as well as sandwich configurations that offer interesting potentials in image/video compression and streaming. View details
    HyperAttention: Large-scale Attention in Linear Time
    Amin Karbasi
    Amir Zandieh
    Insu Han
    David Woodruff
    HyperAttention: Long-context Attention in Near-Linear Time (2024) (to appear)
    Preview abstract In this paper, we introduce a novel approximate attention mechanism dubbed ``HyperAttention``. Despite the rapidly increasing size and complexity of contexts used with Large Language Models (LLM), there is still a dire lack of computationally efficient attention mechanisms scaling better than the naive quadratic time. HyperAttention addresses this gap: it delivers provably linear time complexity with respect to the size of the context, while only incurring a negligible loss in downstream quality. Distinctively, it integrates the principles of Locality Sensitive Hashing (LSH), for efficient detection of heavy elements, along with uniform column sampling, allowing for a good approximation both of the heavy and light components of the attention matrix. HyperAttention provably approximates the attention layer in \textit{linear time}, making it the first practical linear time approximate attention mechanism. Crucially, HyperAttention has a highly-modular design, allowing seamless integration of other rapid low-level implementations, most notably FlashAttention. Empirical evaluations indicate that HyperAttention surpasses the existing methods, achieving orders of magnitude speed-up when compared to prevalent state-of-the-art solutions such as Flash Attention. This breakthrough presents significant implications for enabling the scalability of LLMs to significantly larger contexts. View details
    Graph Searching with Predictions
    Anupam Gupta
    Siddhartha Banerjee
    Zhouzi Li
    ITCS'23 (2023) (to appear)
    Preview abstract Consider an agent (say a robot) exploring an unknown graph in search of some goal state. As it walks around the graph, it learns the nodes and their neighbors. The agent only knows where the goal state is when it reaches it. How do we reach this goal while moving only a small distance? This problem seems hopeless, even on trees of bounded degree, unless we give the agent some help. In our case, this help comes in the form of *predictions*: each node $v$ provides a prediction $f(v)$ of its distance to the goal vertex. Naturally if the predictions are correct, we can reach the goal quickly. What if some of the predictions are erroneous? This naturally models graph search problems where we are given some quality function to guide us towards the goal: in our framework the quality is given by the distance predictions. In this work, we initiate a study of this problem with predictions. We consider the problem on trees (where the problem is already non-trivial) and give deterministic realgorithms whose movement cost is only $O(OPT + ERR)$, where $OPT$ is the distance from the start to the goal vertex, and the $ERR$ is the total number of vertices whose predictions are erroneous. We also consider a ``planning'' version of the problem where the graph and predictions are known at the beginning, so the agent can use this global information to quickly reach the goal. For the planning version, we give a different algorithm for trees, and then an algorithm for all (weighted) graphs with bounded doubling dimension. View details
    Preview abstract In this work, we consider the problem of collaborative multi-user reinforcement learning. In this setting there are multiple users with the same state-action space and transition probabilities but with different rewards. Under the assumption that the reward matrix of the N users has a low-rank structure -- a standard and practically successful assumption in the offline collaborative filtering setting-- the question is can we design algorithms with significantly lower sample complexity compared to the ones that learn the MDP individually for each user. Our main contribution is an algorithm which explores rewards collaboratively with N user-specific MDPs and can learn rewards efficiently in two key settings: tabular MDPs and linear MDPs. When N is large and the rank is constant, the sample complexity per MDP depends logarithmically over the size of the state-space, which represents an exponential reduction (in the state-space size) when compared to the standard ``non-collaborative'' algorithms. View details
    Preview abstract Many modern high-performing machine learning models such as GPT-3 primarily rely on scaling up models, e.g., transformer networks. Simultaneously, a parallel line of work aims to improve the model performance by augmenting an input instance with other (labeled) instances during inference. Examples of such augmentations include task-specific prompts and similar examples retrieved from the training data by a nonparametric component. Remarkably, retrieval-based methods have enjoyed success on a wide range of problems, ranging from standard natural language processing and vision tasks to protein folding, as demonstrated by many recent efforts, including WebGPT and AlphaFold. Despite a growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored. In this paper, we present a formal treatment of retrieval-based models to characterize their generalization ability. In particular, we focus on two classes of retrieval-based classification approaches: First, we analyze a local learning framework that employs an explicit local empirical risk minimization based on retrieved examples for each input instance. Interestingly, we show that breaking down the underlying learning task into local sub-tasks enables the model to employ a low complexity parametric component to ensure good overall accuracy. The second class of retrieval-based approaches we explore learns a global model using kernel methods to directly map an input instance and retrieved examples to a prediction, without explicitly solving a local learning task. View details