Google Research

Learning Semantic-Aware Locomotion Skills from Human Demonstration

Conference on Robot Learning (CoRL) 2022 (2022) (to appear)


The semantics of the environment, such as the terrain type and property, reveals important information for legged robots to adjust their behaviors. In this work, we present a framework that learns semantics-adaptive gait controllers for quadrupedal robots. To facilitate learning, we separate the problem of gait planning and motor control using a hierarchical framework, which consists of a high-level image-conditioned gait policy and a low-level MPC-based motor controller. In addition, to ensure sample efficiency, we pre-train the perception model with an off-road driving dataset, and extract an embedding for downstream learning. To avoid policy evaluation in the noisy real world, we design a simple interface for human operation and learn from human demonstrations. Our framework learns to adjust the speed and gait of the robot based on terrain semantics, using 40 minutes of human demonstration data. We keep testing the performance of the controller on different trails. At the time of writing, the robot has walked 0.2 miles without failure.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work