Google Research

Bisect and Conquer: Hierarchical Clustering via Max-Uncut Bisection

AISTATS, AISTATS, AISTATS (2020), AISTATS (to appear)

Abstract

Hierarchical Clustering is an unsupervised data analysis method which has been widely used for decades. Despite its popularity, it had an underdeveloped analytical foundation and to address this, Dasgupta recently introduced an optimization view-point of hierarchical clustering with pair- wise similarity information that spurred a line of work shedding light on old algorithms (e.g., Average-Linkage), but also designing new algorithms. Here, for the maximization dual of Dasgupta’s objec- tive (introduced by Moseley-Wang), we present polynomial-time 42.46% approximation algorithms that use Max-Uncut Bisection as a subroutine. The previous best worst-case approximation factor in polynomial time was 33.6%, improving only slightly over Average-Linkage which achieves 33.3%. Finally, we complement our positive results by providing APX-hardness (even for 0-1 similarities), under the Small Set Expansion hypothesis.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work