Google Research

Reinforcement Learning for Improving Agent Design

Neural Information Processing Systems Reinforcement Learning Workshop (2018)

Abstract

In many reinforcement learning tasks, the goal is to learn a policy to manipulate an agent, whose design is fixed, to maximize some notion of cumulative reward. The design of the agent's physical structure is rarely optimized for the task at hand. In this work, we explore the possibility of learning a version of the agent's design that is better suited for its task, jointly with the policy. We propose a minor alteration to the OpenAI Gym framework, where we parameterize parts of an environment, and allow an agent to jointly learn to modify these environment parameters along with its policy. We demonstrate that an agent can learn a better structure of its body that is not only better suited for the task, but also facilitates policy learning. Joint learning of policy and structure may even uncover design principles that are useful for assisted-design applications. Videos of results at designrl.github.io

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work