Google Research

A Data-Driven and Distributed Approach to Sparse Signal Representation and Recovery

ICLR 2019

Abstract

In this paper, we focus on two challenges which offset the promise of sparse signal representation, sensing, and recovery. First, real-world signals can seldom be described as perfectly sparse vectors in a known basis, and traditionally used random measurement schemes are seldom optimal for sensing them. Second, existing signal recovery algorithms are usually not fast enough to make them applicable to real-time problems. In this paper, we address these two challenges by presenting a novel framework based on deep learning. For the first challenge, we cast the problem of finding informative measurements by using a maximum likelihood (ML) formulation and show how we can build a data-driven dimensionality reduction protocol for sensing signals using convolutional architectures. For the second challenge, we discuss and analyze a novel parallelization scheme and show it significantly speeds-up the signal recovery process. We demonstrate the significant improvement our method obtains over competing methods through a series of experiments.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work