Google Research

Building Speech Recognition Systems for Language Documentation: The CoEDL Endangered Language Pipeline and Inference System

  • Ben Foley
  • Josh Arnold
  • Rolando Coto-Solano
  • Gautier Durantin
  • T. Mark Ellison
  • Daan van Esch
  • Scott Heath
  • František Kratochvíl
  • Zara Maxwell-Smith
  • David Nash
  • Ola Olsson
  • Mark Richards
  • Nay San
  • Hywel Stoakes
  • Nick Thieberger
  • Janet Wiles
Proceedings of the 6th International Workshop on Spoken Language Technologies for Under-resourced Languages (SLTU 2018)


Machine learning has revolutionised speech technologies for major world languages, but these technologies have generally not been available for the roughly 4,000 languages with populations of fewer than 10,000 speakers. This paper describes the development of Elpis, a pipeline which language documentation workers with minimal computational experience can use to build their own speech recognition models, resulting in models being built for 16 languages from the Asia-Pacific region. Elpis puts machine learning speech technologies within reach of people working with languages with scarce data, in a scalable way. This is impactful since it enables language communities to cross the digital divide, and speeds up language documentation. Complete automation of the process is not feasible for languages with small quantities of data and potentially large vocabularies. Hence our goal is not full automation, but rather to make a practical and effective workflow that integrates machine learning technologies.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work