Google Research

Shampoo: Preconditioned Stochastic Tensor Optimization

ICML (2018)


Preconditioned gradient methods are among the most general and powerful toolsin optimization. However, preconditioning requires storing and manipulatingprohibitively large matrices. We describe and analyze a new structure-awarepreconditioning algorithm, called Shampoo, for stochastic optimization overtensor spaces. Shampoo maintains a set of preconditioning matrices, each ofwhich operates on a single dimension, contracting over the remainingdimensions. We establish convergence guarantees in the stochastic convexsetting, the proof of which builds upon matrix trace inequalities. Ourexperiments with state-of-the-art deep learning models show that Shampoo iscapable of converging considerably faster than commonly used optimizers.Surprisingly, although it involves a more complex update rule, Shampoo's runtime per step is comparable in practice to that of simple gradientmethods such as SGD, AdaGrad, and Adam.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work