Google Research

Analysis and Modeling of Grid Performance on Touchscreen Mobile Devices

CHI'18 (2018)


Touchscreen mobile devices can afford rich interaction behaviors but they are complex to model. Scrollable two-dimensional grids are a common user interface on mobile devices that allow users to access a large number of items on a small screen by direct touch. By analyzing touch input and eye gaze of users during grid interaction, we reveal how multiple performance components come into play in such a task, including navigation, visual search and pointing. These findings inspired us to design a novel predictive model that combines these components for modeling grid tasks. We realized these model components by employing both traditional analytical methods and data-driven machine learning approaches. In addition to showing high accuracy achieved by our model in predicting human performance on a test dataset, we demonstrate how such a model can lead to a significant reduction in interaction time when used in a predictive user interface.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work