- Pieter-jan Kindermans
- Sara Hooker
- Julius Adebayo
- Maximilian Alber
- Kristof T. Schütt
- Sven Dähne
- Dumitru Erhan
- Been Kim
Abstract
Saliency methods aim to explain the predictions of deep neural networks. These methods lack reliability when the explanation is sensitive to factors that do not contribute to the model prediction. We use a simple and common pre-processing step ---adding a constant shift to the input data--- to show that a transformation with no effect on the model can cause numerous methods to incorrectly attribute. In order to guarantee reliability, we posit that methods should fulfill input invariance, the requirement that a saliency method mirror the sensitivity of the model with respect to transformations of the input. We show, through several examples, that saliency methods that do not satisfy input invariance result in misleading attribution.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work