- Chris J. Maddison
- Aja Huang
- Ilya Sutskever
- David Silver
Abstract
The game of Go is more challenging than other board games, due to the difficulty of constructing a position or move evaluation function. In this paper we investigate whether deep convolutional networks can be used to directly represent and learn this knowledge. We train a large 12-layer convolutional neural network by supervised learning from a database of human professional games. The network correctly predicts the expert move in 55% of positions, equalling the accuracy of a 6 dan human player. When the trained convolutional network was used directly to play games of Go, without any search, it beat the traditional search program GnuGo in 97% of games, and matched the performance of a state-of-the-art Monte-Carlo tree search that simulates a million positions per move.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work