Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10827 publications
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    TRACT: Regression-Aware Fine-tuning Meets Chain-of-Thought Reasoning for LLM-as-a-Judge
    Cheng-Han Chiang
    Hung-yi Lee
    Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics (2025)
    Preview abstract The LLM-as-a-judge paradigm uses large language models (LLMs) for automated text evaluation, where a numerical assessment is assigned by an LLM to the input text following scoring rubrics. Existing methods for LLM-as-a-judge use cross-entropy (CE) loss for fine-tuning, which neglects the numeric nature of score prediction. Recent work addresses numerical prediction limitations of LLM fine-tuning through regression-aware fine-tuning, which, however, does not consider chain-of-thought (CoT) reasoning for score prediction. In this paper, we introduce TRACT (Two-stage Regression-Aware fine-tuning with CoT), a method combining CoT reasoning with regression-aware training. TRACT consists of two stages: first, seed LLM is fine-tuned to generate CoTs, which serve as supervision for the second stage fine-tuning. The training objective of TRACT combines the CE loss for learning the CoT reasoning capabilities, and the regression-aware loss for the score prediction. Experiments across four LLM-as-a-judge datasets and two LLMs show that TRACT significantly outperforms existing methods. Extensive ablation studies validate the importance of each component in TRACT. View details
    ExfilState: Automated Discovery of Timer-Free Cache Side Channels on ARM CPUs
    Fabian Thomas
    Michael Torres
    Michael Schwarz
    ACM Conference on Computer and Communications Security (CCS) (2025) (to appear)
    Preview
    Spherical dimension
    Bogdan Chornomaz
    Shay Moran
    Tom Waknine
    2025
    Preview abstract We introduce and study the \emph{spherical dimension}, a natural topological relaxation of the VC dimension that unifies several results in learning theory where topology plays a key role in the proofs. The spherical dimension is defined by extending the set of realizable datasets (used to define the VC dimension) to the continuous space of realizable distributions. In this space, a shattered set of size d (in the VC sense) is completed into a continuous object, specifically a d-dimensional sphere of realizable distributions. The spherical dimension is then defined as the dimension of the largest sphere in this space. Thus, the spherical dimension is at least the VC dimension. The spherical dimension serves as a common foundation for leveraging the Borsuk-Ulam theorem and related topological tools. We demonstrate the utility of the spherical dimension in diverse applications, including disambiguations of partial concept classes, reductions from classification to stochastic convex optimization, stability and replicability, and sample compression schemes. Perhaps surprisingly, we show that the open question posed by Alon, Hanneke, Holzman, and Moran (FOCS 2021) of whether there exist non-trivial disambiguations for halfspaces with margin is equivalent to the basic open question of whether the VC and spherical dimensions are finite together. View details
    Preview abstract A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving steering vectors from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to implicit weight updates (Dherin et al., 2025), we generalize this theory to deep, multi-block transformers. We show how the information contained in any chunk of a user prompt is represented and composed internally through weight vectors and weight matrices. We then derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector- and matrix-based model editing techniques and offer a direct, computationally-grounded method for transmuting textual input into reusable weight updates. View details
    Global earthquake detection and warning using Android phones
    Marc Stogaitis
    Youngmin Cho
    Richard Allen
    Boone Spooner
    Patrick Robertson
    Micah Berman
    Greg Wimpey
    Robert Bosch
    Nivetha Thiruverahan
    Steve Malkos
    Alexei Barski
    Science, 389 (2025), pp. 254-259
    Preview abstract Earthquake early-warning systems are increasingly being deployed as a strategy to reduce losses in earthquakes, but the regional seismic networks they require do not exist in many earthquake-prone countries. We use the global Android smartphone network to develop an earthquake detection capability, an alert delivery system, and a user feedback framework. Over 3 years of operation, the system detected an average of 312 earthquakes per month with magnitudes from M 1.9 to M 7.8 in Türkiye. Alerts were delivered in 98 countries for earthquakes with M ≥4.5, corresponding to ~60 events and 18 million alerts per month. User feedback shows that 85% of people receiving an alert felt shaking, and 36, 28, and 23% received the alert before, during, and after shaking, respectively. We show how smartphone-based earthquake detection algorithms can be implemented at scale and improved through postevent analysis. View details
    Stochastic Deep Restoration Priors for Imaging Inverse Problems
    Yuyang Hu
    Albert Peng
    Weijie Gan
    Ulugbek S. Kamilov
    Forty-second International Conference on Machine Learning (2025)
    Preview abstract Deep neural networks trained as image denoisers are widely used as priors for solving imaging inverse problems. We introduce Stochastic deep Restoration Priors (ShaRP), a novel framework that stochastically leverages an ensemble of deep restoration models beyond denoisers to regularize inverse problems. By using generalized restoration models trained on a broad range of degradations beyond simple Gaussian noise, ShaRP effectively addresses structured artifacts and enables self-supervised training without fully sampled data. We prove that ShaRP minimizes an objective function involving a regularizer derived from the score functions of minimum mean square error (MMSE) restoration operators. We also provide theoretical guarantees for learning restoration operators from incomplete measurements. ShaRP achieves state-of-the-art performance on tasks such as magnetic resonance imaging reconstruction and single-image super-resolution, surpassing both denoiser- and diffusion-model-based methods without requiring retraining. View details
    Consensus or Conflict? Fine-Grained Evaluation of Conflicting Answers in Question-Answering
    Eviatar Nachshoni
    Arie Cattan
    Shmuel Amar
    Ori Shapira
    Ido Dagan
    2025
    Preview abstract Large Language Models (LLMs) have demonstrated strong performance in question answering (QA) tasks. However, Multi-Answer Question Answering (MAQA), where a question may have several valid answers, remains challenging. Traditional QA settings often assume consistency across evidences, but MAQA can involve conflicting answers. Constructing datasets that reflect such conflicts is costly and labor-intensive, while existing benchmarks often rely on synthetic data, restrict the task to yes/no questions, or apply unverified automated annotation. To advance research in this area, we extend the conflict-aware MAQA setting to require models not only to identify all valid answers, but also to detect specific conflicting answer pairs, if any. To support this task, we introduce a novel cost-effective methodology for leveraging fact-checking datasets to construct NATCONFQA, a new benchmark for realistic, conflict-aware MAQA, enriched with detailed conflict labels, for all answer pairs. We evaluate eight high-end LLMs on NATCONFQA, revealing their fragility in handling various types of conflicts and the flawed strategies they employ to resolve them. View details
    Preview abstract This course explores how researchers and practitioners can engage ethically with Indigenous communities when developing AI- and data-intensive applications. Some key issues such as fair engagement, legal constraints, reciprocity, and informed consent are discussed based on the examples drawn from the instructors’ experience. The course also examines good practices in terms of co-designing and co-development processes, data governance and sovereignty issues and systems, decolonial software licensing, and processes of technology transfer and appropriation. In its practical part, the course critically discusses examples and cases gathered from the audience to explore the diversity of issues and solutions when working with Indigenous communities. View details
    Preview abstract This paper presents SYMBIOSIS, an AI-powered framework to make Systems Thinking accessible for addressing societal challenges and unlock paths for leveraging systems thinking framework to improve AI systems. The platform establishes a centralized, open-source repository of systems thinking/system dynamics models categorized by Sustainable Development Goals (SDGs) and societal topics using topic modeling and classification techniques. Systems Thinking resources, though critical for articulating causal theories in complex problem spaces, are often locked behind specialized tools and intricate notations, creating high barriers to entry. To address this, we developed a generative co-pilot that translates complex systems representations - such as causal loops and stock-flow diagrams - into natural language (and vice-versa), allowing users to explore and build models without extensive technical training. Rooted in community-based system dynamics (CBSD) and informed by community-driven insights on societal context, we aim to bridge the problem understanding chasm. This gap, driven by epistemic uncertainty, often limits ML developers who lack the community-specific knowledge essential for problem understanding and formulation, often leading to misaligned causal theories and reduced intervention effectiveness. Recent research identifies causal and abductive reasoning as crucial frontiers for AI, and Systems Thinking provides a naturally compatible framework for both. By making Systems Thinking frameworks more accessible and user-friendly, we aim to serve as a foundational step to unlock future research into Responsible and society-centered AI that better integrates societal context leveraging systems thinking framework and models. Our work underscores the need for ongoing research into AI's capacity essential system dynamics such as feedback processes and time delays, paving the way for more socially attuned, effective AI systems. View details
    Preview abstract We study the effect of a firm's new information disclosure on the information asymmetry between its informed and uninformed investors and its liquidity. To do this, we employ advanced natural language processing (NLP) methods to introduce a novel measure of firms' 10-K filing predictability that quantifies the amount of new information in these reports. Our findings show that more new information is associated with higher bid-ask spreads and lower trading volumes, indicating increased information asymmetry and reduced liquidity, respectively. Notably, institutional ownership moderates these effects, suggesting that sophisticated investors can mitigate the adverse consequences of disclosure unpredictability. An event study analysis further reveals that more new information triggers increased trading activity and abnormal returns immediately after disclosure, though these effects are short-lived. View details
    A personal health large language model for sleep and fitness coaching
    Anastasiya Belyaeva
    Zhun Yang
    Nick Furlotte
    Chace Lee
    Erik Schenck
    Yojan Patel
    Jian Cui
    Logan Schneider
    Robby Bryant
    Ryan Gomes
    Allen Jiang
    Roy Lee
    Javier Perez
    Jamie Rogers
    Cathy Speed
    Shyam Tailor
    Megan Walker
    Jeffrey Yu
    Tim Althoff
    Conor Heneghan
    Mark Malhotra
    Leor Stern
    Shwetak Patel
    Shravya Shetty
    Jiening Zhan
    Daniel McDuff
    Nature Medicine (2025)
    Preview abstract Although large language models (LLMs) show promise for clinical healthcare applications, their utility for personalized health monitoring using wearable device data remains underexplored. Here we introduce the Personal Health Large Language Model (PH-LLM), designed for applications in sleep and fitness. PH-LLM is a version of the Gemini LLM that was finetuned for text understanding and reasoning when applied to aggregated daily-resolution numerical sensor data. We created three benchmark datasets to assess multiple complementary aspects of sleep and fitness: expert domain knowledge, generation of personalized insights and recommendations and prediction of self-reported sleep quality from longitudinal data. PH-LLM achieved scores that exceeded a sample of human experts on multiple-choice examinations in sleep medicine (79% versus 76%) and fitness (88% versus 71%). In a comprehensive evaluation involving 857 real-world case studies, PH-LLM performed similarly to human experts for fitness-related tasks and improved over the base Gemini model in providing personalized sleep insights. Finally, PH-LLM effectively predicted self-reported sleep quality using a multimodal encoding of wearable sensor data, further demonstrating its ability to effectively contextualize wearable modalities. This work highlights the potential of LLMs to revolutionize personal health monitoring via tailored insights and predictions from wearable data and provides datasets, rubrics and benchmark performance to further accelerate personal health-related LLM research. View details
    The FLuid Allocation of Surface Code Qubits (FLASQ) Cost Model for Early Fault-Tolerant Quantum Algorithms
    Bill Huggins
    Amanda Xu
    Matthew Harrigan
    Christopher Kang
    Guang Hao Low
    Austin Fowler
    arXiv:2511.08508 (2025)
    Preview abstract Holistic resource estimates are essential for guiding the development of fault-tolerant quantum algorithms and the computers they will run on. This is particularly true when we focus on highly-constrained early fault-tolerant devices. Many attempts to optimize algorithms for early fault-tolerance focus on simple metrics, such as the circuit depth or T-count. These metrics fail to capture critical overheads, such as the spacetime cost of Clifford operations and routing, or miss they key optimizations. We propose the FLuid Allocation of Surface code Qubits (FLASQ) cost model, tailored for architectures that use a two-dimensional lattice of qubits to implement the two-dimensional surface code. FLASQ abstracts away the complexity of routing by assuming that ancilla space and time can be fluidly rearranged, allowing for the tractable estimation of spacetime volume while still capturing important details neglected by simpler approaches. At the same time, it enforces constraints imposed by the circuit's measurement depth and the processor's reaction time. We apply FLASQ to analyze the cost of a standard two-dimensional lattice model simulation, finding that modern advances (such as magic state cultivation and the combination of quantum error correction and mitigation) reduce both the time and space required for this task by an order of magnitude compared with previous estimates. We also analyze the Hamming weight phasing approach to synthesizing parallel rotations, revealing that despite its low T-count, the overhead from imposing a 2D layout and from its use of additional ancilla qubits will make it challenging to benefit from in early fault-tolerance. We hope that the FLASQ cost model will help to better align early fault-tolerant algorithmic design with actual hardware realization costs without demanding excessive knowledge of quantum error correction from quantum algorithmists. View details
    The Anatomy of a Personal Health Agent
    Ahmed Metwally
    Ken Gu
    Jiening Zhan
    Kumar Ayush
    Hong Yu
    Amy Lee
    Qian He
    Zhihan Zhang
    Isaac Galatzer-Levy
    Xavi Prieto
    Andrew Barakat
    Ben Graef
    Yuzhe Yang
    Daniel McDuff
    Brent Winslow
    Shwetak Patel
    Girish Narayanswamy
    Conor Heneghan
    Max Xu
    Jacqueline Shreibati
    Mark Malhotra
    Orson Xu
    Tim Althoff
    Tony Faranesh
    Nova Hammerquist
    Vidya Srinivas
    arXiv (2025)
    Preview abstract Health is a fundamental pillar of human wellness, and the rapid advancements in large language models (LLMs) have driven the development of a new generation of health agents. However, the solution to fulfill diverse needs from individuals in daily non-clinical settings is underexplored. In this work, we aim to build a comprehensive personal health assistant that is able to reason about multimodal data from everyday consumer devices and personal health records. To understand end users’ needs when interacting with such an assistant, we conducted an in-depth analysis of query data from users, alongside qualitative insights from users and experts gathered through a user-centered design process. Based on these findings, we identified three major categories of consumer health needs, each of which is supported by a specialist subagent: (1) a data science agent that analyzes both personal and population-level time-series wearable and health record data to provide numerical health insights, (2) a health domain expert agent that integrates users’ health and contextual data to generate accurate, personalized insights based on medical and contextual user knowledge, and (3) a health coach agent that synthesizes data insights, drives multi-turn user interactions and interactive goal setting, guiding users using a specified psychological strategy and tracking users’ progress. Furthermore, we propose and develop a multi-agent framework, Personal Health Insight Agent Team (PHIAT), that enables dynamic, personalized interactions to address individual health needs. To evaluate these individual agents and the multi-agent system, we develop a set of N benchmark tasks and conduct both automated and human evaluations, involving 100’s of hours of evaluation from health experts, and 100’s of hours of evaluation from end-users. Our work establishes a strong foundation towards the vision of a personal health assistant accessible to everyone in the future and represents the most comprehensive evaluation of a consumer AI health agent to date. View details
    ×