Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10129 publications
    Preview abstract Prompting and in-context learning (ICL) have become efficient learning paradigms for large language models (LLMs). However, LLMs suffer from prompt brittleness and various bias factors in the prompt, including but not limited to the formatting, the choice verbalizers, and the ICL examples. To address this problem that results in unexpected performance degradation, calibration methods have been developed to mitigate the effects of these biases while recovering LLM performance. In this work, we first conduct a systematic analysis of the existing calibration methods, where we both provide a unified view and reveal the failure cases. Inspired by these analyses, we propose Batch Calibration (BC), a simple yet intuitive method that controls the contextual bias from the batched input, unifies various prior approaches, and effectively addresses the aforementioned issues. BC is zero-shot, inference-only, and incurs negligible additional costs. In the few-shot setup, we further extend BC to allow it to learn the contextual bias from labeled data. We validate the effectiveness of BC with PaLM 2-(S, M, L) and CLIP models and demonstrate state-of-the-art performance over previous calibration baselines across more than 10 natural language understanding and image classification tasks. View details
    FieldSwap: Data Augmentation for Effective Form-Like Document Extraction
    Seth Ebner
    IEEE 40th International Conference on Data Engineering (ICDE) (2024), pp. 4722-4732
    Preview abstract Extracting structured data from visually rich documents like invoices, receipts, financial statements, and tax forms is key to automating many business workflows. However, building extraction models in this domain often demands a large collection of high-quality training examples. To address this challenge, we introduce FieldSwap, a novel data augmentation technique specifically designed for such extraction problems. FieldSwap generates synthetic training examples by replacing key phrases indicative of one field with those corresponding to another. Our experiments on five diverse datasets demonstrate that incorporating FieldSwap-augmented data into the training process can enhance model performance by 1-11 F1 points, particularly when dealing with limited training data (10--100 documents). Additionally, we propose algorithms for automatically inferring key phrases from the training data. Our findings indicate that FieldSwap is effective regardless of whether key phrases are manually provided by human experts or inferred automatically. View details
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    ILYA Drozdov
    Xiao Mi
    Alexis Morvan
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Gordon Hill
    Markus Hoffmann
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Seneca Meeks
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    David Rhodes
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Science, 384 (2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    PROMPT: A Fast and Extensible Memory Profiling Framework
    Ziyang Xu
    Yebin Chon
    Yian Su
    Zujun Tan
    Simone Campanoni
    David I. August
    Proceedings of the ACM on Programming Languages, 8, Issue OOPSLA (2024)
    Preview abstract Memory profiling captures programs' dynamic memory behavior, assisting programmers in debugging, tuning, and enabling advanced compiler optimizations like speculation-based automatic parallelization. As each use case demands its unique program trace summary, various memory profiler types have been developed. Yet, designing practical memory profilers often requires extensive compiler expertise, adeptness in program optimization, and significant implementation effort. This often results in a void where aspirations for fast and robust profilers remain unfulfilled. To bridge this gap, this paper presents PROMPT, a framework for streamlined development of fast memory profilers. With PROMPT, developers need only specify profiling events and define the core profiling logic, bypassing the complexities of custom instrumentation and intricate memory profiling components and optimizations. Two state-of-the-art memory profilers were ported with PROMPT where all features preserved. By focusing on the core profiling logic, the code was reduced by more than 65% and the profiling overhead was improved by 5.3× and 7.1× respectively. To further underscore PROMPT's impact, a tailored memory profiling workflow was constructed for a sophisticated compiler optimization client. In 570 lines of code, this redesigned workflow satisfies the client’s memory profiling needs while achieving more than 90% reduction in profiling overhead and improved robustness compared to the original profilers. View details
    Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines
    Aditya U Kale
    Alastair Dennison
    Alexander Martindale
    An Wen Chan
    Andrew Beam
    Benjamin Ng
    Cecilia S. Lee
    Christopher Kelly
    Christopher Yau
    David Moher
    Gary Collins
    Lauren Oakden-Rayner
    Lavinia Ferrante di Ruffano
    Melanie Calvert
    Melissa D McCradden
    Pearse Keane
    Robert Golub
    Samantha Cruz Rivera
    Victoria Ngai
    Xiaoxuan Liu
    Nature Communications (2024)
    Preview abstract The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77–94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines. View details
    Shadow Hamiltonian Simulation
    Rolando Somma
    Robbie King
    Thomas O'Brien
    arXiv:2407.21775 (2024)
    Preview abstract We present shadow Hamiltonian simulation, a framework for simulating quantum dynamics using a compressed quantum state that we call the “shadow state”. The amplitudes of this shadow state are proportional to the expectations of a set of operators of interest. The shadow state evolves according to its own Schrodinger equation, and under broad conditions can be simulated on a quantum computer. We analyze a number of applications of this framework to quantum simulation problems. This includes simulating the dynamics of exponentially large systems of free fermions, or exponentially large systems of free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. Shadow Hamiltonian simulation can be extended to simulate expectations of more complex operators such as two-time correlators or Green’s functions, and to study the evolution of operators themselves in the Heisenberg picture View details
    A data-centric perspective on the information needed for hydrological uncertainty predictions
    Andreas Auer
    Martin Gauch
    Frederik Kratzert
    Sepp Hochreiter
    Daniel Klotz
    Hydrology and Earth System Sciences (2024)
    Preview abstract Uncertainty estimates are fundamental to assess the reliability of predictive models in hydrology. We use the framework of conformal prediction to investigate the impact of temporal and spatial information on uncertainty estimates within hydrological predictions. Integrating recent information significantly enhances overall uncertainty predictions, even with substantial gaps between updates. While local information yields good results on average, it proves to be insufficient for peak-flow predictions. Incorporating global information improves the accuracy of peak-flow bounds, corroborating findings from related studies. Overall, the study underscores the importance of continuous data updates and the integration of global information for robust and efficient uncertainty estimation. View details
    Quartic Quantum Speedups for Planted Inference Problems
    Alexander Schmidhuber
    Ryan O'Donnell
    arXiv:2406.19378 (2024)
    Preview abstract We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks. View details
    Preview abstract We study the price of anarchy of the generalized second-price auction where bidders are value maximizers (i.e., autobidders). We show that in general the price of anarchy can be as bad as 0. For comparison, the price of anarchy of running VCG is 1/2 in the autobidding world. We further show a fined-grained price of anarchy with respect to the discount factors (i.e., the ratios of click probabilities between lower slots and the highest slot in each auction) in the generalized second-price auction, which highlights the qualitative relation between the smoothness of the discount factors and the efficiency of the generalized second-price auction. View details
    Preview abstract In this paper we study users' opinions about the privacy of their mobile health apps. We look at what they write in app reviews in the 'Health & Fitness' category on the Google Play store. We identified 2832 apps in this category (based on 1K minimum installs). Using NLP/LLM analyses, we find that 76% of these apps have at least some privacy reviews. In total this yields over 164,000 reviews about privacy, from over 150 countries and in 25 languages. Our analyses identifies top themes and offers an approximation of how widespread these issues are around the world. We show that the top 4 themes - Data Sharing and Exposure, Permission Requests, Location Tracking and Data Collection - are issues of concern in over 70 countries. Our automatically generated thematic summaries reveal interesting aspects that deserve further research around user suspicions (unneeded data collection), user requests (more fine-grained control over data collection and data access), as well as user behavior (uninstalling apps). View details
    Network Flow Problems with Electric Vehicles
    Haripriya Pulyassary
    Aaron Schild
    David Shmoys
    Manxi Wu
    IPCO (2024)
    Preview abstract Electric vehicle (EV) adoption in long-distance logistics faces challenges like range anxiety and uneven distribution of charging stations. Two pivotal questions emerge: How can EVs be efficiently routed in a charging network considering range limits, charging speeds and prices And, can the existing charging infrastructure sustain the increasing demand for EVs in long-distance logistics? This paper addresses these questions by introducing a novel theoretical and computational framework to study the EV network flow problems. We present an EV network flow model that incorporates range restrictions and nonlinear charging rates, and identify conditions under which polynomial-time solutions can be obtained for optimal single EV routing, maximum flow, and minimum cost flow problems. We develop efficient computational methods for computing the optimal routing and flow vector using a novel graph augmentation technique. Our findings provide insights for optimizing EV routing in logistics, ensuring an efficient and sustainable future. View details
    Perspective Chapter: Assessment of Subjective and Objective Sleep Quality from Wrist-Worn Wearable Data
    Ben Yetton
    Daniel McDuff
    Andrew Barakat
    Allen Jiang
    Nicholas Allen
    Logan Schneider
    Ari Winbush
    Conor Heneghan
    Preview abstract Researchers are interested in measuring both objective and subjective assessments of sleep, and associated phenomena such as sleepiness, quality and restoration. Predicting perceived sleep quality accurately from objective measurements remains an unsolved and interesting problem. Previous studies using polysomnograms and actigraphy have shown poor concordance between objective metrics and subjective sleep quality, but were often limited by study duration (e.g., one or two nights of PSG, study population in low 100 s). In this chapter, we consider whether consumer sleep trackers could significantly improve the assessment of subjective sleep quality through longer periods of assessment and larger data scale. We describe a recent study that modeled two subjective sleep quality metrics (PROMIS Sleep-Related Impairment (SI) and Sleep Disturbance (SD) Index) from objective sleep metrics acquired from a consumer wearable device (Fitbit). However, the goodness-of-fit parameter remains relatively low, even with the increased data availability and scale of data provided by consumer wearables. Specifically, for a well-characterized normative population of 2106 adults, we see that a linear multivariate model produces an R2 of 0.107 for predicting SI and R2 of 0.147 for SR, consistent with prior results using PSG and actigraphy. We conclude that subjective sleep quality remains broadly a psychological construct that cannot be fully modeled solely by objective sleep metrics. View details
    Comparative analysis of genAI features in Business Intelligence Platforms
    Aqsa Fulara
    International Journal of Computer Trends and Technology, Volume 72 Issue 4, 95-101, April 2024 (2024)
    Preview abstract The study is a comparative analysis of generative AI capabilities and their applications in BI plaforms. The rapid advancement here has opened new frontiers for data driven decision making and insights generation. However, integration in BI tools is largely unexplored in academia. The findings reveal significant variations in approach taken by different BI tools for similar genAI tasks. View details
    KATch: A Fast Symbolic Verifier for NetKAT
    Mark Moeller
    Jules Jacobs
    Olivier Savary Belanger
    David Darais
    Cole Schlesinger
    Nate Foster
    Alexandra Silva
    Programming Languages and Implementation (PLDI) (2024) (to appear)
    Preview abstract We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches. View details
    Secure by Design at Google
    Google Security Engineering (2024)
    Preview abstract This whitepaper provides an overview of Google's approach to secure design. View details