Aqsa Fulara

Aqsa Fulara

Aqsa Fulara is a product manager at Google, with experience in enterprise data, AI and business intelligence products. She has worked on Google Cloud Recommendations AI, Looker, Google Ads and Google Assistant. She is passionate about building innovative AI products with delightful user experiences to solve real user problems and in differentiated ways. Her focus on delivering business value through win-win partnerships has led to her proven track record of achieving business outcomes.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract The article summarizes the unique challenges and strategies required for a successful GTM (Go to market) strategy in enterprise world. We cover how enterprise PM function is unique from regular PM, and why enterprise PMs must look at distribution as an inherent product process. We also share a framework for thinking about various components of GTM strategy. Key aspects include customer segmentation, account acquisition strategies, product packaging, positionining and marketing; and technical enablement and content distribution. View details
    Preview abstract A product manager’s specific role varies from one company to the next. Still, all product managers balance many aspects of their job, including customers’ needs, a vision for new products, and the project team. So what tools and strategies are needed to create a successful career as a product manager? What are the “5 Things You Need To Create A Successful Career As A Product Manager”? Authority Magazine speaks with Aqsa Fulara, a product manager at Google to answer these questions with stories and insights from her experiences. View details
    Comparative analysis of genAI features in Business Intelligence Platforms
    Aqsa Fulara
    International Journal of Computer Trends and Technology, Volume 72 Issue 4, 95-101, April 2024 (2024)
    Preview abstract The study is a comparative analysis of generative AI capabilities and their applications in BI plaforms. The rapid advancement here has opened new frontiers for data driven decision making and insights generation. However, integration in BI tools is largely unexplored in academia. The findings reveal significant variations in approach taken by different BI tools for similar genAI tasks. View details
    Preview abstract In the present computerized period, information driven navigation is essential for the progress of cooperative work areas. This paper gives an extensive examination of how information designing, distributed storage, and business insight synergistically engage groups. We look at the basic standards of information designing, zeroing in on the plan, development, and the management of adaptable information pipelines. The job of distributed storage is investigated, featuring its ability to give adaptable, secure, and open information arrangements. Besides, we dive into business knowledge instruments and their capacity to change crude information into significant experiences. Through contextual analyses and exact information, we delineate the groundbreaking effect of these advances in group efficiency, coordinated effort, and dynamic cycles. This examination highlights the significance of incorporating hearty information designing works on, utilizing distributed storage arrangements, and utilizing complex business knowledge apparatuses to establish information engaged cooperative conditions. View details
    Preview abstract The articles delves into the promise of AI in business intelligence. It briefly reviews the evolution of BI and various Cloud tools, followed by the paradigm shift in how data is consumed. While AI brings huge potential, the article covers areas that enterprises must exercise caution over, when building intelligent agents to answer data questions. View details
    Building Recommendation Systems using Lambda Architecture
    Vipul Bharat Marlecha
    Sreyashi Das
    International Research Journal of Engineering and Technology (IRJET), Volume: 11 Issue: 05 | May 2024 (2024)
    Preview abstract This paper studies the recommendation systems that are typical to content discovery and personalized services like Netflix and Amazon. The study includes typical components of recommendation systems, what data and inputs are required to serve depending on the machine learning models used. We share how the recommendations leverage a mix of batch processing and streaming databases, and end with trends and potential future developments for recommendation systems View details
    Preview abstract In the present computerized period, information driven navigation is essential for the progress of cooperative work areas. This paper gives an extensive examination of how information designing, distributed storage, and business insight synergistically engage groups. We look at the basic standards of information designing, zeroing in on the plan, development, and the management of adaptable information pipelines. The job of distributed storage is investigated, featuring its ability to give adaptable, secure, and open information arrangements. Besides, we dive into business knowledge instruments and their capacity to change crude information into significant experiences. Through contextual analyses and exact information, we delineate the groundbreaking effect of these advances in group efficiency, coordinated effort, and dynamic cycles. This examination highlights the significance of incorporating hearty information designing works on, utilizing distributed storage arrangements, and utilizing complex business knowledge apparatuses to establish information engaged cooperative conditions. View details