Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10132 publications
Streamlining Workload Management in AI-Driven Cloud Architectures: A Comparative Algorithmic Approach
Pravallika Mannem
Kiran Kumar Patibandla
International Research Journal of Engineering and Technology, 11 (2024), pp. 113-121
Preview abstract
The use of artificial intelligence (AI) in cloud architectures has significantly increased processing efficiency and scale. However, with the development of complex algorithms and big data as well as surprisingly entered into our machine learning world; workload management becomes a significant issue in AI cloud computing. Existing workload management solutions are rule-based heuristics that may result in underutilization of resources and poor performance. For that, we present an algorithmic comparative approach to easing the burden of workload management for AI-driven cloud architectures. This is in contrast to executing a batch of tasks with different algorithms and comparing performance, cost, etc. We use ML methods to determine the best algorithm for our workload, and then deploy this in a self-contained binary that can switch between algorithms at runtime on an available resource. We validated our scheme with simulations, which demonstrates the capability of superior resource use and diminished completion time in comparison to rule-based schemes. When needed, flexibility and scalability allow you easier control over workloads that are subject to change or allocation. By simplifying AI-driven cloud workload management, the elasticity of their overall approach greatly enhances efficiency and scalability for those organizations looking to run even larger and take advantage of more complex workloads faster Tweet this Share on Facebook.
View details
Scalable Learning of Segment-Level Traffic Congestion Functions
Shushman Choudhury
Aboudy Kreidieh
Alexandre Bayen
IEEE Intelligent Transportation Systems Conference (2024)
Preview abstract
We propose and study a data-driven framework for identifying traffic congestion functions (numerical relationships between observations of traffic variables) at global scale and segment-level granularity. In contrast to methods that estimate a separate set of parameters for each roadway, ours learns a single black-box function over all roadways in a metropolitan area. First, we pool traffic data from all segments into one dataset, combining static attributes with dynamic time-dependent features. Second, we train a feed-forward neural network on this dataset, which we can then use on any segment in the area. We evaluate how well our framework identifies congestion functions on observed segments and how it generalizes to unobserved segments and predicts segment attributes on a large dataset covering multiple cities worldwide. For identification error on observed segments, our single data-driven congestion function compares favorably to segment-specific model-based functions on highway roads, but has room to improve on arterial roads. For generalization, our approach shows strong performance across cities and road types: both on unobserved segments in the same city and on zero-shot transfer learning between cities. Finally, for predicting segment attributes, we find that our approach can approximate critical densities for individual segments using their static properties.
View details
Preview abstract
Learned reweighting (LRW) approaches to supervised learning use an optimization criterion to assign weights for training instances, in order to maximize performance on a representative validation dataset. We pose and formalize the problem of optimized selection of the validation set used in LRW training, to improve classifier generalization. In particular, we show that using hard-to-classify instances in the validation set has both a theoretical connection to, and strong empirical evidence of generalization. We provide an efficient algorithm for training this meta-optimized model, as well as a simple train-twice heuristic for careful comparative study. We demonstrate that LRW with easy validation data performs consistently worse than LRW with hard validation data, establishing the validity of our meta-optimization problem. Our proposed algorithm outperforms a wide range of baselines on a range of datasets and domain shift challenges (Imagenet-1K, CIFAR-100, Clothing-1M, CAMELYON, WILDS, etc.), with ~1% gains using VIT-B on Imagenet. We also show that using naturally hard examples for validation (Imagenet-R / Imagenet-A) in LRW training for Imagenet improves performance on both clean and naturally hard test instances by 1-2%. Secondary analyses show that using hard validation data in an LRW framework improves margins on test data, hinting at the mechanism underlying our empirical gains. We believe this work opens up new research directions for the meta-optimization of meta-learning in a supervised learning context.
View details
Federated Variational Inference: Towards Improved Personalization and Generalization
Elahe Vedadi
Josh Dillon
Philip Mansfield
Karan Singhal
Arash Afkanpour
Warren Morningstar
AAAI Federated Learning on the Edge Symposium (2024)
Preview abstract
Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks.
View details
Securing the AI Software Supply Chain
Isaac Hepworth
Kara Olive
Kingshuk Dasgupta
Michael Le
Mark Lodato
Mihai Maruseac
Sarah Meiklejohn
Shamik Chaudhuri
Tehila Minkus
Google, Google, 1600 Amphitheatre Parkway, Mountain View, CA, 94043 (2024)
Preview abstract
As AI-powered features gain traction in software applications, we see many of the same problems we’ve faced with traditional software—but at an accelerated pace. The threat landscape continues to expand as AI is further integrated into everyday products, so we can expect more attacks. Given the expense of building models, there is a clear need for supply chain solutions.
This paper explains our approach to securing our AI supply chain using provenance information and provides guidance for other organizations. Although there are differences between traditional and AI development processes and risks, we can build on our work over the past decade using Binary Authorization for Borg (BAB), Supply-chain Levels for Software Artifacts (SLSA), and next-generation cryptographic signing solutions via Sigstore, and adapt these to the AI supply chain without reinventing the wheel. Depending on internal processes and platforms, each organization’s approach to AI supply chain security will look different, but the focus should be on areas where it can be improved in a relatively short time.
Readers should note that the first part of this paper provides a broad overview of “Development lifecycles for traditional and AI software”. Then we delve specifically into AI supply chain risks, and explain our approach to securing our AI supply chain using provenance information. More advanced practitioners may prefer to go directly to the sections on “AI supply chain risks,” “Controls for AI supply chain security,” or even the “Guidance for practitioners” section at the end of the paper, which can be adapted to the needs of any organization.
View details
Creating an Empirical Dermatology Dataset Through Crowdsourcing With Web Search Advertisements
Abbi Ward
Jimmy Li
Julie Wang
Sriram Lakshminarasimhan
Ashley Carrick
Jay Hartford
Pradeep Kumar S
Sunny Virmani
Renee Wong
Margaret Ann Smith
Dawn Siegel
Steven Lin
Justin Ko
JAMA Network Open (2024)
Preview abstract
Importance: Health datasets from clinical sources do not reflect the breadth and diversity of disease, impacting research, medical education, and artificial intelligence tool development. Assessments of novel crowdsourcing methods to create health datasets are needed.
Objective: To evaluate if web search advertisements (ads) are effective at creating a diverse and representative dermatology image dataset.
Design, Setting, and Participants: This prospective observational survey study, conducted from March to November 2023, used Google Search ads to invite internet users in the US to contribute images of dermatology conditions with demographic and symptom information to the Skin Condition Image Network (SCIN) open access dataset. Ads were displayed against dermatology-related search queries on mobile devices, inviting contributions from adults after a digital informed consent process. Contributions were filtered for image safety and measures were taken to protect privacy. Data analysis occurred January to February 2024.
Exposure: Dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and estimated Monk Skin Tone (eMST) labels.
Main Outcomes and Measures: The primary metrics of interest were the number, quality, demographic diversity, and distribution of clinical conditions in the crowdsourced contributions. Spearman rank order correlation was used for all correlation analyses, and the χ2 test was used to analyze differences between SCIN contributor demographics and the US census.
Results: In total, 5749 submissions were received, with a median of 22 (14-30) per day. Of these, 5631 (97.9%) were genuine images of dermatological conditions. Among contributors with self-reported demographic information, female contributors (1732 of 2596 contributors [66.7%]) and younger contributors (1329 of 2556 contributors [52.0%] aged <40 years) had a higher representation in the dataset compared with the US population. Of 2614 contributors who reported race and ethnicity, 852 (32.6%) reported a racial or ethnic identity other than White. Dermatologist confidence in assigning a differential diagnosis increased with the number of self-reported demographic and skin-condition–related variables (Spearman R = 0.1537; P < .001). Of 4019 contributions reporting duration since onset, 2170 (54.0%) reported onset within less than 7 days of submission. Of the 2835 contributions that could be assigned a dermatological differential diagnosis, 2523 (89.0%) were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset.
Conclusions and Relevance: The findings of this survey study suggest that search ads are effective at crowdsourcing dermatology images and could therefore be a useful method to create health datasets. The SCIN dataset bridges important gaps in the availability of images of common, short-duration skin conditions.
View details
Preview abstract
As AI systems quickly improve in both breadth and depth of performance, they lend themselves to creating increasingly powerful and realistic agents, including the possibility of agents modeled on specific people. We anticipate that within our lifetimes it may become common practice for people to create a custom AI agent to interact with loved ones and/or the broader world after death. We call these generative ghosts, since such agents will be capable of generating novel content rather than merely parroting content produced by their creator while living. In this paper, we first discuss the design space of potential implementations of generative ghosts. We then discuss the practical and ethical implications of generative ghosts, including potential positive and negative impacts on individuals and society. Based on these considerations, we lay out a research agenda for the AI and HCI research communities to empower people to create and interact with AI afterlives in a safe and beneficial manner.
View details
Media Mix Model Calibration With Bayesian Priors
Mike Wurm
Brenda Price
Ying Liu
research.google (2024)
Preview abstract
Effective model calibration is a critical and indispensable component in developing Media Mix Models (MMMs). One advantage of Bayesian-based MMMs lies in their capacity to accommodate the information from experiment results and the modelers' domain knowledge about the ad effectiveness by setting priors for the model parameters. However, it remains ambiguous about how and which Bayesian priors should be tuned for calibration purpose. In this paper, we propose a new calibration method through model reparameterization. The reparameterized model includes Return on Ads Spend (ROAS) as a model parameter, enabling straightforward adjustment of its prior distribution to align with either experiment results or the modeler's prior knowledge. The proposed method also helps address several key challenges regarding combining MMMs and incrementality experiments. We use simulations to demonstrate that our approach can significantly reduce the bias and uncertainty in the resultant posterior ROAS estimates.
View details
Reinforcement Learning-Enhanced Cloud-Based Open Source Analog Circuit Generator for Standard and Cryogenic Temperatures in 130-nm and 180-nm OpenPDKs
Ali Hammoud
Anhang Li
Ayushman Tripathi
Wen Tian
Harsh Khandeparkar
Ryan Wans
Boris Murmann
Dennis Sylvester
Mehdi Saligane
Preview abstract
This work introduces an open-source, Process Technology-agnostic framework for hierarchical circuit netlist, layout, and Reinforcement Learning (RL) optimization. The layout, netlist, and optimization python API is fully modular and publicly installable via PyPI. It features a bottom-up hierarchical construction, which allows for complete design reuse across provided PDKs. The modular hierarchy also facilitates parallel circuit design iterations on cloud platforms. To illustrate its capabilities, a two-stage OpAmp with a 5T first-stage, commonsource second-stage, and miller compensation is implemented. We instantiate the OpAmp in two different open-source process design kits (OpenPDKs) using both room-temperature models and cryogenic (4K) models. With a human designed version as the baseline, we leveraged the parameterization capabilities of the framework and applied the RL optimizer to adapt to the power consumption limits suitable for cryogenic applications while maintaining gain and bandwidth performance. Using the modular RL optimization framework we achieve a 6x reduction in power consumption compared to manually designed circuits while maintaining gain to within 2%.
View details
V2Meow: Meowing to the Visual Beat via Video-to-Music Generation
Chris Donahue
Dima Kuzmin
Judith Li
Kun Su
Mauro Verzetti
Qingqing Huang
Yu Wang
Vol. 38 No. 5: AAAI-24 Technical Tracks 5, AAAI Press (2024), pp. 4952-4960
Preview abstract
Video-to-music generation demands both a temporally localized high-quality listening experience and globally aligned video-acoustic signatures. While recent music generation models excel at the former through advanced audio codecs, the exploration of video-acoustic signatures has been confined to specific visual scenarios. In contrast, our research confronts the challenge of learning globally aligned signatures between video and music directly from paired music and videos, without explicitly modeling domain-specific rhythmic or semantic relationships. We propose V2Meow, a video-to-music generation system capable of producing high-quality music audio for a diverse range of video input types using a multi-stage autoregressive model. Trained on 5k hours of music audio clips paired with video frames mined from in-the-wild music videos, V2Meow is competitive with previous domain-specific models when evaluated in a zero-shot manner. It synthesizes high-fidelity music audio waveforms solely by conditioning on pre-trained general purpose visual features extracted from video frames, with optional style control via text prompts. Through both qualitative and quantitative evaluations, we demonstrate that our model outperforms various existing music generation systems in terms of visual-audio correspondence and audio quality. Music samples are available at tinyurl.com/v2meow.
View details
Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan
Atilla Kiraly
Corbin Cunningham
Ryan Najafi
Jie Yang
Chuck Lau
Diego Ardila
Scott Mayer McKinney
Rory Pilgrim
Mozziyar Etemadi
Sunny Jansen
Lily Peng
Shravya Shetty
Neeral Beladia
Krish Eswaran
Radiology: Artificial Intelligence (2024)
Preview abstract
Lung cancer is the leading cause of cancer death world-wide with 1.8 million deaths in 20201. Studies have concluded that low-dose computed tomography lung cancer screening can reduce mortality by up to 61%2 and updated 2021 US guidelines expanded eligibility. As screening efforts rise, AI can play an important role, but must be unobtrusively integrated into existing clinical workflows. In this work, we introduce a state-of-the-art, cloud-based AI system providing lung cancer risk assessments without requiring any user input. We demonstrate its efficacy in assisting lung cancer screening under both US and Japanese screening settings using different patient populations and screening protocols. Technical improvements over a previously described system include a focus on earlier cancer detection for improved accuracy, introduction of an effective assistive user interface, and a system designed to integrate into typical clinical workflows. The stand-alone AI system was evaluated on 3085 individuals achieving area under the curve (AUC) scores of 91.7% (95%CI [89.6, 95.2]), 93.3% (95%CI [90.2, 95.7]), and 89.1% (95%CI [77.7, 97.3]) on three datasets (two from US and one from Japan), respectively. To evaluate the system’s assistive ability, we conducted two retrospective multi-reader multi-case studies on 627 cases read by experienced board certified radiologists (average 20 years of experience [7,40]) using local PACS systems in the respective US and Japanese screening settings. The studies measured the reader’s level of suspicion (LoS) and categorical responses for scores and management recommendations under country-specific screening protocols. The radiologists’ AUC for LoS increased with AI assistance by 2.3% (95%CI [0.1-4.5], p=0.022) for the US study and by 2.3% (95%CI [-3.5-8.1], p=0.179) for the Japan study. Specificity for recalls increased by 5.5% (95%CI [2.7-8.5], p<0.0001) for the US and 6.7% (95%CI [4.7-8.7], p<0.0001) for the Japan study. No significant reduction in other metrics occured. This work advances the state-of-the-art in lung cancer detection, introduces generalizable interface concepts that can be applicable to similar AI applications, and demonstrates its potential impact on diagnostic AI in global lung cancer screening with results suggesting a substantial drop in unnecessary follow-up procedures without impacting sensitivity.
View details
Preview abstract
Text-to-image diffusion models have demonstrated remarkable capabilities in transforming textual prompts into coherent images, yet the computational cost of their inference remains a persistent challenge. To address this issue, we present UFOGen, a novel generative model designed for ultra-fast, one-step text-to-image synthesis. In contrast to conventional approaches that focus on improving samplers or employing distillation techniques for diffusion models, UFOGen adopts a hybrid methodology, integrating diffusion models with a GAN objective. Leveraging a newly introduced diffusion-GAN objective and initialization with pre-trained diffusion models, UFOGen excels in efficiently generating high-quality images conditioned on textual descriptions in a single step. Beyond traditional text-to-image generation, UFOGen showcases versatility in applications. Notably, UFOGen stands among the pioneering models enabling one-step text-to-image generation and diverse downstream tasks, presenting a significant advancement in the landscape of efficient generative models.
View details
Preview abstract
The article summarizes the unique challenges and strategies required for a successful GTM (Go to market) strategy in enterprise world. We cover how enterprise PM function is unique from regular PM, and why enterprise PMs must look at distribution as an inherent product process. We also share a framework for thinking about various components of GTM strategy. Key aspects include customer segmentation, account acquisition strategies, product packaging, positionining and marketing; and technical enablement and content distribution.
View details
Security Signals: Making Web Security Posture Measurable At Scale
David Dworken
Artur Janc
Santiago (Sal) Díaz
(2024) (to appear)
Preview abstract
The area of security measurability is gaining increased attention, with a wide range of organizations calling for the development of scalable approaches for assessing the security of software systems and infrastructure. In this paper, we present our experience developing Security Signals, a comprehensive system providing security measurability for web services, deployed in a complex application ecosystem of thousands of web services handling traffic from billions of users. The system collects security-relevant information from production HTTP traffic at the reverse proxy layer, utilizing novel concepts such as synthetic signals augmented with additional risk information to provide a holistic view of the security posture of individual services and the broader application ecosystem. This approach to measurability has enabled large-scale security improvements to our services, including allowing prioritized rollouts of security enhancements and the implementation of automated regression monitoring; it has proven valuable for security research and prioritization of defensive work. Security Signals addresses shortcomings of prior web measurability proposals by tracking a comprehensive set of security properties relevant to web applications, and by extracting insights from collected data for use by both security experts and non-experts. We believe the lessons learned from the implementation and use of Security Signals offer valuable insights for practitioners responsible for web service security, potentially inspiring new approaches to web security measurability.
View details
Do Large Code Models Understand Programming Concepts? A Black Box Approach
Ashish Hooda
Aaron Wilson
Kassem Fawaz
Somesh Jha
(2024) (to appear)
Preview abstract
Large Language Models have been able to replicate their success from text generation to coding tasks. While a lot of work has made it clear that they have remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree do auto-regressive models understand the logical constructs of the underlying programs. We propose CAPP, a counterfactual testing framework to evaluate whether large code models understand programming concepts. With only black-box access to the model, we use CAPP to evaluate 10 popular large code models for 5 different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
View details