Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10132 publications
Efficiency of the Generalized Second-Price Auction for Value Maximizers
Hanrui Zhang
Proceedings of the ACM on Web Conference 2024, 46–56
Preview abstract
We study the price of anarchy of the generalized second-price auction where bidders are value maximizers (i.e., autobidders). We show that in general the price of anarchy can be as bad as 0. For comparison, the price of anarchy of running VCG is 1/2 in the autobidding world. We further show a fined-grained price of anarchy with respect to the discount factors (i.e., the ratios of click probabilities between lower slots and the highest slot in each auction) in the generalized second-price auction, which highlights the qualitative relation between the smoothness of the discount factors and the efficiency of the generalized second-price auction.
View details
Preview abstract
Artificial Intelligence (AI) holds the promise of transforming healthcare by improving patient outcomes, increasing accessibility and efficiency, and decreasing the cost of care. Realizing this vision of a healthier world for everyone everywhere requires partnerships and trust between healthcare systems, clinicians, payers, technology companies, pharmaceutical companies, and governments to drive innovations in machine learning and artificial intelligence to patients. Google is one example of a technology company that is partnering with healthcare systems, clinicians, and researchers to develop technology solutions that will directly improve the lives of patients. In this chapter we share landmark trials of the use of AI in healthcare. We also describe the application of our novel system of organizing information to unify data in electronic health records (EHRs) and bring an integrated view of patient records to clinicians. We discuss our consumer focused innovation in dermatology to help guide search journeys for personalized information about skin conditions. Finally, we share a perspective on how to embed ethics and a concern for all patients into the development of AI.
View details
Thesios: Synthesizing Accurate Counterfactual I/O Traces from I/O Samples
Mangpo Phothilimthana
Soroush Ghodrati
Selene Moon
ASPLOS 2024, Association for Computing Machinery
Preview abstract
Representative modeling of I/O activity is crucial when designing large-scale distributed storage systems. Particularly important use cases are counterfactual “what-if” analyses that assess the impact of anticipated or hypothetical new storage policies or hardware prior to deployment. We propose Thesios, a methodology to accurately synthesize such hypothetical full-resolution I/O traces by carefully combining down-sampled I/O traces collected from multiple disks attached to multiple storage servers. Applying this approach to real-world traces that a real ready routinely sampled at Google, we show that our synthesized traces achieve 95–99.5% accuracy in read/write request numbers, 90–97% accuracy in utilization, and 80–99.8% accuracy in read latency compared to metrics collected from actual disks. We demonstrate how The-sios enables diverse counterfactual I/O trace synthesis and analyses of hypothetical policy, hardware, and server changes through four case studies: (1) studying the effects of changing disk’s utilization, fullness, and capacity, (2) evaluating new data placement policy, (3) analyzing the impact on power and performance of deploying disks with reduced rotations-per-minute (RPM), and (4) understanding the impact of increased buffer cache size on a storage server. Without Thesios, such counterfactual analyses would require costly and potentially risky A/B experiments in production.
View details
Preview abstract
To tackle the challenge of optimizing middle-mile logistics, the crucial link between warehouses and final deliveries, we introduce a novel instance generator that aims to create a rich and adaptable dataset of diverse instances to empower researchers and developers. The instance defines a logistics network with hubs, vehicles, routes, lines, and rotations. Additionally, it specifies a list of shipments that need to be transported through this network. To customize the instance, the user can adjust various parameters, such as the number of hubs, density of the space graphs, distribution of shipment weights, or the maximum number of vehicles.
The generator reflects real-world complexities through variations in network size and structure. We developed a random graph generator to mimic real-world middle mile networks, by generating space graphs for hubs. Subsequently, lines and routes are randomly constructed on the generated space graphs, while adhering to user-defined constraints.
The tool is in the form of an optimized C++ library that enables the generation of instances with a large number of hubs and shipments. It offers the immense potential for advancing middle-mile logistics optimization by providing a comprehensive and adaptable dataset for benchmarking optimization approaches, training machine learning models, and analyzing the impact of network configurations and shipments characteristics on overall efficiency.
View details
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Gilles Baechler
Srinivas Sunkara
Maria Wang
Hassan Mansoor
Vincent Etter
Jason Lin
(2024)
Preview abstract
Screen user interfaces (UIs) and infographics, sharing similar visual language and design principles, play important roles in human communication and human-machine interaction. We introduce ScreenAI, a vision-language model that specializes in UI and infographics understanding. Our model improves upon the PaLI architecture with the flexible patching strategy of pix2struct and is trained on a unique mixture of datasets. At the heart of this mixture is a novel screen annotation task in which the model has to identify the type and location of UI elements. We use these text annotations to describe screens to Large Language Models and automatically generate question-answering (QA), UI navigation, and summarization training datasets at scale. We run ablation studies to demonstrate the impact of these design choices. At only 5B parameters, ScreenAI achieves new state-of-the-artresults on UI- and infographics-based tasks (Multi-page DocVQA, WebSRC, MoTIF and Widget Captioning), and new best-in-class performance on others (Chart QA, DocVQA, and InfographicVQA) compared to models of similar size. Finally, we release three new datasets: one focused on the screen annotation task and two others focused on question answering.
View details
Analyzing Prospects for Quantum Advantage in Topological Data Analysis
Dominic W. Berry
Yuan Su
Casper Gyurik
Robbie King
Joao Basso
Abhishek Rajput
Nathan Wiebe
Vedran Djunko
PRX Quantum, 5 (2024), pp. 010319
Preview abstract
Lloyd et al. were first to demonstrate the promise of quantum algorithms for computing Betti numbers in persistent homology (a way of characterizing topological features of data sets). Here, we propose, analyze, and optimize an improved quantum algorithm for topological data analysis (TDA) with reduced scaling, including a method for preparing Dicke states based on inequality testing, a more efficient amplitude estimation algorithm using Kaiser windows, and an optimal implementation of eigenvalue projectors based on Chebyshev polynomials. We compile our approach to a fault-tolerant gate set and estimate constant factors in the Toffoli complexity. Our analysis reveals that super-quadratic quantum speedups are only possible for this problem when targeting a multiplicative error approximation and the Betti number grows asymptotically. Further, we propose a dequantization of the quantum TDA algorithm that shows that having exponentially large dimension and Betti number are necessary, but insufficient conditions, for super-polynomial advantage. We then introduce and analyze specific problem examples for which super-polynomial advantages may be achieved, and argue that quantum circuits with tens of billions of Toffoli gates can solve some seemingly classically intractable instances.
View details
Community search signatures as foundation features for human-centered geospatial modeling
Chaitanya Kamath
Mohit Agarwal
David Schottlander
Shailesh Bavadekar
Niv Efron
Shravya Shetty
ICML 2024 Workshop on Data-Centric Machine Learning Research
Preview abstract
Aggregated relative search frequencies offer a unique composite signal reflecting people's habits, concerns, interests, intents, and general information needs, which are not found in other readily available datasets. Temporal search trends have been successfully used to perform nowcasting across a variety of domains such as infectious diseases, unemployment rates, and retail sales. However, most existing applications require curating specialized datasets of individual keywords, queries, or query clusters, and the search data need to be temporally aligned with the outcome variable of interest. We propose a novel approach for generating an aggregated and anonymized representation of search interest as foundation features at the community level for geospatial modeling. We benchmark these features using spatial datasets across multiple domains. In regions with a population greater than 3000 that cover over 95% of the contiguous US population, our models achieve an average R-squared score of 0.74 across 21 health variables, and 0.80 across 6 demographic and environmental variables. Our results demonstrate that these search features can be used for spatial predictions without strict temporal alignment, and that the resulting models outperform spatial interpolation and state of the art methods using satellite imagery features.
View details
Rambler: Supporting Writing With Speech via LLM-Assisted Gist Manipulation
Susan Lin
Jeremy Warner
J.D. Zamfirescu-Pereira
Matthew G Lee
Sauhard Jain
Michael Xuelin Huang
Bjoern Hartmann
Can Liu
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA
Preview abstract
Dictation enables efficient text input on mobile devices. However, writing with speech can produce disfluent, wordy, and incoherent text and thus requires heavy post-processing. This paper presents Rambler, an LLM-powered graphical user interface that supports gist-level manipulation of dictated text with two main sets of functions: gist extraction and macro revision. Gist extraction generates keywords and summaries as anchors to support the review and interaction with spoken text. LLM-assisted macro revisions allow users to respeak, split, merge, and transform dictated text without specifying precise editing locations. Together they pave the way for interactive dictation and revision that help close gaps between spontaneously spoken words and well-structured writing. In a comparative study with 12 participants performing verbal composition tasks, Rambler outperformed the baseline of a speech-to-text editor + ChatGPT, as it better facilitates iterative revisions with enhanced user control over the content while supporting surprisingly diverse user strategies.
View details
Preview abstract
Predictive uncertainty-a model's self awareness regarding its accuracy on an input-is key for both building robust models via training interventions and for test-time applications such as selective classification. We propose a novel instance-conditioned reweighting approach that captures predictive uncertainty using an auxiliary network and unifies these train- and test-time applications. The auxiliary network is trained using a meta-objective in a bilevel optimization framework. A key contribution of our proposal is the meta-objective of minimizing the dropout variance, an approximation of Bayesian Predictive uncertainty. We show in controlled experiments that we effectively capture the diverse specific notions of uncertainty through this meta-objective, while previous approaches only capture certain aspects. These results translate to significant gains in real-world settings-selective classification, label noise, domain adaptation, calibration-and across datasets-Imagenet, Cifar100, diabetic retinopathy, Camelyon, WILDs, Imagenet-C,-A,-R, Clothing1M, etc. For Diabetic Retinopathy, we see upto 3.4%/3.3% accuracy and AUC gains over SOTA in selective classification. We also improve upon large-scale pretrained models such as PLEX.
View details
Do Large Code Models Understand Programming Concepts? A Black Box Approach
Ashish Hooda
Aaron Wilson
Kassem Fawaz
Somesh Jha
(2024) (to appear)
Preview abstract
Large Language Models have been able to replicate their success from text generation to coding tasks. While a lot of work has made it clear that they have remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree do auto-regressive models understand the logical constructs of the underlying programs. We propose CAPP, a counterfactual testing framework to evaluate whether large code models understand programming concepts. With only black-box access to the model, we use CAPP to evaluate 10 popular large code models for 5 different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
View details
Efficient Location Sampling Algorithms for Road Networks
Vivek Kumar
Ameya Velingker
Santhoshini Velusamy
WebConf (2024)
Preview abstract
Many geographic information systems applications rely on the data provided by user devices in the road network. Such applications include traffic monitoring, driving navigation, detecting road closures or the construction of new roads, etc. This signal is collected by sampling locations from the user trajectories and is a critical process for all such systems. Yet, it has not been sufficiently studied in the literature. The most natural way to sample a trajectory is perhaps using a frequency based algorithm, e.g., sample every $x$ seconds. However, as we argue in this paper, such a simple strategy can be very wasteful in terms of resources (e.g., server-side processing, user battery) and in terms of the amount of user data that it maintains. In this work we conduct a horizontal study of various location sampling algorithms (including frequency-based, road geography-based, reservoir-sampling based, etc.) and extract their trade-offs in terms of various metrics of interest, such as, the size of the stored data and the induced quality of training for prediction tasks (e.g., predicting speeds) using the road network of New York City.
View details
Multimodal Modeling for Spoken Language Identification
Shikhar Bharadwaj
Sriram (Sri) Ganapathy
Sid Dalmia
Wei Han
Yu Zhang
Proceedings of 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024) (2024)
Preview abstract
Spoken language identification refers to the task of automatically predicting the spoken language in a given utterance. Conventionally, it is modeled as a speech-based language identification task. Prior techniques have been constrained to a single modality; however in the case of video data there is a wealth of other metadata that may be beneficial for this task. In this work, we propose MuSeLI, a Multimodal Spoken Language Identification method, which delves into the use of various metadata sources to enhance language identification. Our study reveals that metadata such as video title, description and geographic location provide substantial information to identify the spoken language of the multimedia recording. We conduct experiments using two diverse public datasets of YouTube videos, and obtain state-of-the-art results on the language identification task. We additionally conduct an ablation study that describes the distinct contribution of each modality for language recognition.
View details
Data Exchange Markets via Utility Balancing
Aditya Bhaskara
Sungjin Im
Kamesh Munagala
Govind S. Sankar
WebConf (2024)
Preview abstract
This paper explores the design of a balanced data-sharing marketplace for entities with heterogeneous datasets and machine learning models that they seek to refine using data from other agents. The goal of the marketplace is to encourage participation for data sharing in the presence of such heterogeneity. Our market design approach for data sharing focuses on interim utility balance, where participants contribute and receive equitable utility from refinement of their models. We present such a market model for which we study computational complexity, solution existence, and approximation algorithms for welfare maximization and core stability. We finally support our theoretical insights with simulations on a mean estimation task inspired by road traffic delay estimation.
View details
GASS: GPU Automated Sharing at Scale
Dragos Sbirlea
Jiafan Zhu
Konstantinos Menychtas
Yuang Liu
Zhijing Gene Qin
The IEEE International Conference on Cloud Computing (CLOUD) 2024 (2024)
Preview abstract
General-purpose GPUs, with their powerful numerical computing capacity, are popular platforms for accelerating machine-learning workloads. However, our experience with a large scale production deployment shows that typical GPU work-loads often fail to keep the GPU pipeline fully occupied, resulting in low overall resource utilization. To address this inefficiency, we have designed and implemented GPU Automated Sharing at Scale (GASS). GASS relies on fine-grained time-multiplexing to let GPU compute resources be shared among different tasks, and on-demand paging to let GPU memory be shared among them. GASS mitigates sharing performance anomalies by using real-time performance monitoring to drive adaptive rescheduling. Our cluster level evaluation shows the aggregated GPU throughput is increased by 50% under GASS and that sharing enables the cluster to support 19% more GPU jobs.
View details
Generative Powers of Ten
Xiaojuan Wang
Steve Seitz
Ben Mildenhall
Pratul Srinivasan
Dor Verbin
Aleksander Hołyński
Preview abstract
We present a method that uses a text-to-image model to generate consistent content across multiple image scales, enabling extreme semantic zooms into a scene, e.g., ranging from a wide-angle landscape view of a forest to a macro shot of an insect sitting on one of the tree branches. This representation allows us to render continuously zooming videos, or explore different scales of the scene interactively. We achieve this through a joint multi-scale diffusion sampling approach that encourages consistency across different scales while preserving the integrity of each individual sampling process. Since each generated scale is guided by a different text prompt, our method enables deeper levels of zoom than traditional super-resolution methods that may struggle to create new contextual structure at vastly different scales. We compare our method qualitatively with alternative techniques in image super-resolution and outpainting, and show that our method is most effective at generating consistent multi-scale content.
View details