Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10129 publications
Preview abstract
Understanding and effectively measuring developer goals is critical for enhancing developer experience and productivity. By focusing on durable, consistent, relatable, sensical, and observable goals we create a more robust view into our developers’ days. In this article, we outline our process for articulating and refining goals, provide our list of 30 rigorously-tested developer goals, and share a little bit about how we leverage both sentiment and behavioral data to measure and understand goals through different lenses.
View details
Preview abstract
Use of Text-to-Image models is expanding beyond generating generic objects, as they are increasingly being adopted by diverse global communities to create visual representations of their unique culture. Current T2I benchmarks primarily evaluate image-text alignment, aesthetics and fidelity of generations for complex prompts with generic objects, overlooking the critical dimension of cultural understanding. In this work, we address this gap by defining a framework to evaluate cultural competence of T2I models, and present a scalable approach to collect cultural artifacts unique to a particular culture from Knowledge Graphs and Large Language Models in tandem. We assess the ability of state-of-the-art T2I models to generate culturally faithful and realistic images across 8 countries and 3 cultural domains. Furthermore, we emphasize the importance of T2I models reflecting a culture's diversity and introduce cultural diversity as a novel metric for T2I evaluation, drawing inspiration from the Vendi Score. We introduce T2I-GCube, a first-of-its-kind benchmark for T2I evaluation. T2I-GCube includes cultural prompts, metrics, and cultural concept spaces, enabling comprehensive assessment of T2I models' cultural knowledge and diversity. Our evaluations reveal significant gaps in the cultural knowledge of existing models and provide valuable insights into the diversity of image outputs for under-specified prompts. By introducing a novel approach to evaluating cultural diversity and knowledge in T2I models, T2I-GCube will be instrumental in fostering the development of models with enhanced cultural competence.
View details
AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation
Yuanwen Yue
Sabarinath Mahadevan
Jonas Schult
Francis Engelmann
Bastian Leibe
Konrad Schindler
Theodora Kontogianni
ICLR (2024)
Preview abstract
During interactive segmentation, a model and a user work together to delineate objects of interest in a 3D point cloud. In an iterative process, the model assigns each data point to an object (or the background), while the user corrects errors in the resulting segmentation and feeds them back into the model. The current best practice formulates the problem as binary classification and segments objects one at a time. The model expects the user to provide positive clicks to indicate regions wrongly assigned to the background and negative clicks on regions wrongly assigned to the object. Sequentially visiting objects is wasteful since it disregards synergies between objects: a positive click for a given object can, by definition, serve as a negative click for nearby objects. Moreover, a direct competition between adjacent objects can speed up the identification of their common boundary. We introduce AGILE3D, an efficient, attention-based model that (1) supports simultaneous segmentation of multiple 3D objects, (2) yields more accurate segmentation masks with fewer user clicks, and (3) offers faster inference. Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries as well as between them and the 3D scene through a click attention module. Every time new clicks are added, we only need to run a lightweight decoder that produces updated segmentation masks. In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art. Moreover, we also verify its practicality in real-world setups with real user studies. Project page: https://ywyue.github.io/AGILE3D.
View details
On the Benefits of Traffic “Reprofiling” The Multiple Hops Case – Part I
Henry Sariowan
Jiaming Qiu
Jiayi Song
Roch Guerin
IEEE/ACM Transactions on Networking (2024)
Preview abstract
Abstract—This paper considers networks where user traffic is regulated through deterministic traffic profiles, e.g. token buckets, and requirescleanguaranteed hard delay bounds. The network’s goal is to minimize the resources it needs to meet those cleanrequirementsbounds. The paper explores how reprofiling, i.e. proactively modifying how user traffic enters the network, can be of benefit. Reprofiling produces “smoother” flows but introduces an up-front access delay that forces tighter network delays. The paper explores this trade-off and demonstrates that, unlike what holds in the single-hop case, reprofiling can be of benefit even when “optimal”cleansophisticated schedulers are available at each hop.
View details
Preview abstract
Most of our interactions with digital content currently occur inside 2D screens, however moving from that format to immersive setups brings a paradigm shift. From content inside the screen to users inside the content. This change requires a revisit to how we blend the analog and the digital and how we transfer content between the two modes. Perhaps it even asks for new guidelines too. While different solutions appear in the space, the dynamic range only seems to widen. We can start to see what works and what does not work so well, in an empirical or ethnographic approach, beyond laboratory studies. But if we want to accelerate adoption we need to further the understanding on how current tasks can be improved. How this new form of interaction can increase their productivity. In this paper we focus on analyzing and converging what we think works, and envisioning how this new set of immersive devices and interactions can enable productivity beyond already existing tools.
View details
Website Data Transparency in the Browser
Sebastian Zimmeck
Daniel Goldelman
Owen Kaplan
Logan Brown
Justin Casler
Judeley Jean-Charles
Joe Champeau
24th Privacy Enhancing Technologies Symposium (PETS 2024), PETS (to appear)
Preview abstract
Data collection by websites and their integrated third parties is often not transparent. We design privacy interfaces for the browser to help people understand who is collecting which data from them. In a proof of concept browser extension, Privacy Pioneer, we implement a privacy popup, a privacy history interface, and a watchlist to notify people when their data is collected. For detecting location data collection, we develop a machine learning model based on TinyBERT, which reaches an average F1 score of 0.94. We supplement our model with deterministic methods to detect trackers, collection of personal data, and other monetization techniques. In a usability study with 100 participants 82% found Privacy Pioneer easy to understand and 90% found it useful indicating the value of privacy interfaces directly integrated in the browser.
View details
Statistical Analysis of Cardiovascular Diseases Dataset of BRFSS
Ashank Anshuman
Aakarshit Uppal
Indrajit Mukherjee
Open Access Library Journal, 11 (2024)
Preview abstract
Cardiovascular Diseases (CVDs) remain a leading cause of death in the United States. These diseases, including coronary heart disease, heart attack, and stroke, pose significant health risks. Accurate prediction of CVD probability can aid in prevention and management. To address this challenge, we analyzed data from the Behavioral Risk Factor Surveillance System (BRFSS) spanning 1995-2017. We developed innovative methods to handle missing data and normalize values. Deep learning models were employed to predict risk factors and, subsequently, the likelihood of CVDs. Our models were implemented using TensorFlow and trained on a high-performance computing server. The models accurately predicted risk factors with over 90% accuracy, enabling targeted interventions. We successfully predicted CVD probability with greater than 95% accuracy, providing valuable insights for healthcare providers. An online portal was developed to forecast CVD trends over the next 31 years, facilitating proactive planning and resource allocation.
View details
Mechanism Design for Large Language Models
Paul Duetting
Haifeng Xu
Proceedings of the ACM on Web Conference 2024, Association for Computing Machinery, New York, NY, USA, 144–155
Preview abstract
We investigate auction mechanisms for AI-generated content, focusing on applications like ad creative generation. In our model, agents' preferences over stochastically generated content are encoded as large language models (LLMs). We propose an auction format that operates on a token-by-token basis, and allows LLM agents to influence content creation through single dimensional bids. We formulate two desirable incentive properties and prove their equivalence to a monotonicity condition on output aggregation. This equivalence enables a second-price rule design, even absent explicit agent valuation functions. Our design is supported by demonstrations on a publicly available LLM.
View details
Quantum Computation of Stopping power for Inertial Fusion Target Design
Dominic Berry
Alina Kononov
Alec White
Joonho Lee
Andrew Baczewski
Proceedings of the National Academy of Sciences, 121 (2024), e2317772121
Preview abstract
Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it - one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quantum 2, 040332 2021], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with a novel implementation of a high order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with
roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoCo or P450.
View details
Preview abstract
Machine learning has a pseudoscience problem. An abundance of ethical issues arising from the use of machine learning (ML)-based technologies—by now, well documented—is inextricably entwined with the systematic epistemic misuse of these tools. We take a recent resurgence of deep learning-assisted physiognomic research as a case study in the relationship between ML-based pseudoscience and attendant social harms—the standard purview of “AI ethics.” In practice, the epistemic and ethical dimensions of ML misuse often arise from shared underlying reasons and are resolvable by the same pathways. Recent use of ML toward the ends of predicting protected attributes from photographs highlights the need for philosophical, historical, and domain-specific perspectives of particular sciences in the prevention and remediation of misused ML.
View details
From Provenance to Aberrations: Image Creator and Screen Reader User Perspectives on Alt Text for AI-Generated Images
Maitraye Das
Alexander J. Fiannaca
CHI Conference on Human Factors in Computing Systems (2024)
Preview abstract
AI-generated images are proliferating as a new visual medium. However, state-of-the-art image generation models do not output alternative (alt) text with
their images, rendering them largely inaccessible to screen reader users (SRUs). Moreover, less is known about what information would be most desirable
to SRUs in this new medium. To address this, we invited AI image creators and SRUs to evaluate alt text prepared from various sources and write their own
alt text for AI images. Our mixed-methods analysis makes three contributions. First, we highlight creators’ perspectives on alt text, as creators are well-positioned
to write descriptions of their images. Second, we illustrate SRUs’ alt text needs particular to the emerging medium of AI images. Finally, we discuss the
promises and pitfalls of utilizing text prompts written as input for AI models in alt text generation, and areas where broader digital accessibility guidelines
could expand to account for AI images.
View details
PRewrite: Prompt Rewriting with Reinforcement Learning
Qiaozhu Mei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024) (to appear)
Preview abstract
Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a "trial and error" fashion that can be time consuming, ineffective, and sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications?
To address these problems, we investigate automated prompt engineering in this paper. Specifically, we propose PRewrite, an automated method to rewrite an under-optimized prompt to a more effective prompt. We instantiate the prompt rewriter using an LLM. The rewriter LLM is trained using reinforcement learning to optimize the performance on a given downstream task. We conduct experiments on diverse benchmark datasets, which demonstrates the effectiveness of PRewrite.
View details
Unveiling Privacy Perspectives about Mobile Health Apps on a Large Scale
PETS workshop: Privacy, Safety and Trust for Mobile Health Apps (2024)
Preview abstract
In this paper we study users' opinions about the privacy of their mobile health apps. We look at what they write in app reviews in the 'Health & Fitness' category on the Google Play store. We identified 2832 apps in this category (based on 1K minimum installs). Using NLP/LLM analyses, we find that 76% of these apps have at least some privacy reviews. In total this yields over 164,000 reviews about privacy, from over 150 countries and in 25 languages. Our analyses identifies top themes and offers an approximation of how widespread these issues are around the world. We show that the top 4 themes - Data Sharing and Exposure, Permission Requests, Location Tracking and Data Collection - are issues of concern in over 70 countries. Our automatically generated thematic summaries reveal interesting aspects that deserve further research around user suspicions (unneeded data collection), user requests (more fine-grained control over data collection and data access), as well as user behavior (uninstalling apps).
View details
Leveraging Function Space Aggregation for Federated Learning at Scale
Nikita Dhawan
Karolina Dziugaite
Transactions on Machine Learning Research (2024)
Preview abstract
The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model, without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg.
View details
Context-aware Transliteration of Romanized South Asian Languages
Christo Kirov
Computational Linguistics, 50 (2) (2024), 475–534
Preview abstract
While most transliteration research is focused on single tokens such as named entities -- e.g., transliteration of "અમદાવાદ" from the Gujarati script to the Latin script "Ahmedabad" -- the informal romanization prevalent in South Asia and elsewhere often requires transliteration of full sentences. The lack of large parallel text collections of full sentence (as opposed to single word) transliterations necessitates incorporation of contextual information into transliteration via non-parallel resources, such as via mono-script text collections. In this paper, we present a number of methods for improving transliteration in context for such a use scenario. Some of these methods in fact improve performance without making use of sentential context, allowing for better quantification of the degree to which contextual information in particular is responsible for system improvements. Our final systems, which ultimately rely upon ensembles including large pretrained language models finetuned on simulated parallel data, yield substantial improvements over the best previously reported results for full sentence transliteration from Latin to native script on all 12 languages in the Dakshina dataset (Roark et al. 2020), with an overall 4.8% absolute (27.1% relative) mean word-error rate reduction.
View details