Jump to Content
Nicholas Rubin

Nicholas Rubin

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    ILYA Drozdov
    Xiao Mi
    Alexis Morvan
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Gordon Hill
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Mostafa Khezri
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Seneca Meeks
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    David Rhodes
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Science, vol. 384 (2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Drug Design on Quantum Computers
    Raffaele Santagati
    Alán Aspuru-Guzik
    Matthias Degroote
    Leticia Gonzalez
    Elica Kyoseva
    Nikolaj Moll
    Markus Oppel
    Robert Parrish
    Michael Streif
    Christofer Tautermann
    Horst Weiss
    Nathan Wiebe
    Clemens Utschig-Utschig
    Nature Physics (2024)
    Preview abstract The promised industrial applications of quantum computers often rest on their anticipated ability to perform accurate, efficient quantum chemical calculations. Computational drug discovery relies on accurate predictions of how candidate drugs interact with their targets in a cellular environment involving several thousands of atoms at finite temperatures. Although quantum computers are still far from being used as daily tools in the pharmaceutical industry, here we explore the challenges and opportunities of applying quantum computers to drug design. We discuss where these could transform industrial research and identify the substantial further developments needed to reach this goal. View details
    Stable quantum-correlated many-body states through engineered dissipation
    Xiao Mi
    Alexios Michailidis
    Sara Shabani
    Jerome Lloyd
    Rajeev Acharya
    Igor Aleiner
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Charina Chou
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Dripto Debroy
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Kostyantyn Kechedzhi
    Mostafa Khezri
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Orion Martin
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Dmitry Abanin
    Science, vol. 383 (2024), pp. 1332-1337
    Preview abstract Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors. View details
    Quantum Simulation of Realistic Materials in First Quantization Using Non-local Pseudopotentials
    Dominic Berry
    Ahmed Elnabawy
    Gabriele Ahlers
    Albert Eugene DePrince III
    Joonho Lee
    Christian Gogolin
    arXiv:2312.07654 (2023)
    Preview abstract This paper improves and demonstrates the usefulness of the first quantized plane-wave algorithms for the quantum simulation of electronic structure, developed by Babbush et al. and Su et al. We describe the first quantum algorithm for first quantized simulation that accurately includes pseudopotentials. We focus on the Goedecker-Tetter-Hutter (GTH) pseudopotential, which is among the most accurate and widely used norm-conserving pseudopotentials enabling the removal of core electrons from the simulation. The resultant screened nuclear potential regularizes cusps in the electronic wavefunction so that orders of magnitude fewer plane waves are required for a chemically accurate basis. Despite the complicated form of the GTH pseudopotential, we are able to block encode the associated operator without significantly increasing the overall cost of quantum simulation. This is surprising since simulating the nuclear potential is much simpler without pseudopotentials, yet is still the bottleneck. We also generalize prior methods to enable the simulation of materials with non-cubic unit cells, which requires nontrivial modifications. Finally, we combine these techniques to estimate the block-encoding costs for commercially relevant instances of heterogeneous catalysis (e.g. carbon monoxide adsorption on transition metals) and compare to the quantum resources needed to simulate materials in second quantization. We conclude that for computational cells with many particles, first quantization often requires meaningfully less spacetime volume. View details
    Purification-Based Quantum Error Mitigation of Pair-Correlated Electron Simulations
    Thomas E O'Brien
    Gian-Luca R. Anselmetti
    Fotios Gkritsis
    Vincent Elfving
    Stefano Polla
    William J. Huggins
    Oumarou Oumarou
    Kostyantyn Kechedzhi
    Dmitry Abanin
    Rajeev Acharya
    Igor Aleiner
    Richard Ross Allen
    Trond Ikdahl Andersen
    Kyle Anderson
    Markus Ansmann
    Frank Carlton Arute
    Kunal Arya
    Juan Atalaya
    Michael Blythe Broughton
    Bob Benjamin Buckley
    Alexandre Bourassa
    Leon Brill
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Yu Chen
    Benjamin Chiaro
    Desmond Chun Fung Chik
    Josh Godfrey Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Ilya Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Ebrahim Forati
    Austin Fowler
    Brooks Riley Foxen
    William Giang
    Dar Gilboa
    Alejandro Grajales Dau
    Steve Habegger
    Michael C. Hamilton
    Sean Harrington
    Jeremy Patterson Hilton
    Trent Huang
    Ashley Anne Huff
    Sergei Isakov
    Justin Thomas Iveland
    Cody Jones
    Pavol Juhas
    Mostafa Khezri
    Marika Kieferova
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily MeeKit Laws
    Joonho Lee
    Kenny Lee
    Alexander T. Lill
    Wayne Liu
    Orion Martin
    Trevor Johnathan Mccourt
    Anthony Megrant
    Xiao Mi
    Masoud Mohseni
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    Jiun How Ng
    Murray Nguyen
    Alex Opremcak
    Andre Gregory Petukhov
    Rebecca Potter
    Kannan Aryaperumal Sankaragomathi
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Vladimir Shvarts
    Jindra Skruzny
    Vadim Smelyanskiy
    Clarke Smith
    Rolando Diego Somma
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Robert Young
    Yaxing Zhang
    Ningfeng Zhu
    Christian Gogolin
    Nature Physics (2023)
    Preview abstract An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations. View details
    Preview abstract Stopping power is the rate at which a material absorbs the kinetic energy of a charged particle passing through it - one of many properties needed over a wide range of thermodynamic conditions in modeling inertial fusion implosions. First-principles stopping calculations are classically challenging because they involve the dynamics of large electronic systems far from equilibrium, with accuracies that are particularly difficult to constrain and assess in the warm-dense conditions preceding ignition. Here, we describe a protocol for using a fault-tolerant quantum computer to calculate stopping power from a first-quantized representation of the electrons and projectile. Our approach builds upon the electronic structure block encodings of Su et al. [PRX Quantum 2, 040332 2021], adapting and optimizing those algorithms to estimate observables of interest from the non-Born-Oppenheimer dynamics of multiple particle species at finite temperature. We also work out the constant factors associated with a novel implementation of a high order Trotter approach to simulating a grid representation of these systems. Ultimately, we report logical qubit requirements and leading-order Toffoli costs for computing the stopping power of various projectile/target combinations relevant to interpreting and designing inertial fusion experiments. We estimate that scientifically interesting and classically intractable stopping power calculations can be quantum simulated with roughly the same number of logical qubits and about one hundred times more Toffoli gates than is required for state-of-the-art quantum simulations of industrially relevant molecules such as FeMoCo or P450. View details
    Preview abstract Quadratic programming over the (special) orthogonal group encompasses a broad class of optimization problems such as group synchronization, point-set registration, and simultaneous localization and mapping. Such problems are instances of the little noncommutative Grothendieck problem (LNCG), a natural generalization of quadratic combinatorial optimization where, instead of binary decision variables, one optimizes over orthogonal matrices. In this work, we establish an embedding of this class of LNCG problems over the orthogonal group onto a quantum Hamiltonian. This embedding is accomplished by identifying orthogonal matrices with their double cover (Pin and Spin group) elements, which we represent as quantum states. We connect this construction to the theory of free fermions, which provides a physical interpretation of the derived LNCG Hamiltonian as a two-body interacting-fermion model due to the quadratic nature of the problem. Determining extremal states of this Hamiltonian provides an outer approximation to the original problem, analogous to classical relaxations of the problem via semidefinite programming. Furthermore, we show that when considering optimization over the special orthogonal group, our quantum relaxation naturally obeys additional, powerful constraints based on the convex hull of rotation matrices. The classical size of this convex-hull representation is exponential in matrix dimension, whereas the quantum representation requires only a linear number of qubits. Finally, to project the relaxed solution into the feasible space, we employ rounding procedures which return orthogonal matrices from appropriate measurements of the quantum state. Through numerical experiments we provide evidence that this quantum relaxation can produce high-quality approximations. View details
    Measurement-induced entanglement and teleportation on a noisy quantum processor
    Jesse Hoke
    Matteo Ippoliti
    Dmitry Abanin
    Rajeev Acharya
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    William Giang
    Dar Gilboa
    Raja Gosula
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Paula Heu
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Kostyantyn Kechedzhi
    Mostafa Khezri
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Orion Martin
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Xiao Mi
    Vedika Khemani
    Nature, vol. 622 (2023), 481–486
    Preview abstract Measurement has a special role in quantum theory: by collapsing the wavefunction, it can enable phenomena such as teleportation and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time that go beyond the established paradigms for characterizing phases, either in or out of equilibrium. For present-day noisy intermediate-scale quantum (NISQ) processors, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling to measurement-induced teleportation. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors. View details
    Fault-Tolerant Quantum Simulation of Materials Using Bloch Orbitals
    Dominic Berry
    Alec White
    Eugene DePrince III
    Sabrina Sicolo
    Michael Kuehn
    Michael Kaicher
    Joonho Lee
    PRX Quantum, vol. 4 (2023), pp. 040303
    Preview abstract The simulation of chemistry is among the most promising applications of quantum computing. However, most prior work exploring algorithms for block encoding, time evolving, and sampling in the eigenbasis of electronic structure Hamiltonians has either focused on modeling finite-sized systems, or has required a large number of plane-wave basis functions. In this work, we extend methods for quantum simulation with Bloch orbitals constructed from symmetry-adapted atom-centered orbitals so that one can model periodic ab initio Hamiltonians using only a modest number of basis functions. We focus on adapting existing algorithms based on combining qubitization with tensor factorizations of the Coulomb operator. Significant modifications of those algorithms are required to obtain an asymptotic speedup leveraging translational (or, more broadly, Abelian) symmetries. We implement block encodings using known tensor factorizations and a new Bloch orbital form of tensor hypercontraction. Finally, we estimate the resources required to deploy our algorithms to classically challenging model materials relevant to the chemistry of lithium nickel oxide battery cathodes within the surface code. We find that even with these improvements, the quantum runtime of these algorithms is on the order of thousands of days and further algorithmic improvements are required to make realistic quantum simulation of materials practical. View details
    Efficient Quantum Computation of Molecular Forces and Other Energy Gradients
    Thomas E O'Brien
    Michael Streif
    Raffaele Santagati
    Yuan Su
    William J. Huggins
    Joshua Goings
    Nikolaj Moll
    Elica Kyoseva
    Matthias Degroote
    Christofer Tautermann
    Joonho Lee
    Dominic Berry
    Nathan Wiebe
    Physical Review Research, vol. 4 (2022), pp. 043210
    Preview abstract While most work on the quantum simulation of chemistry has focused on computing energy surfaces, a similarly important application requiring subtly different algorithms is the computation of energy derivatives. Almost all molecular properties can be expressed an energy derivative, including molecular forces, which are essential for applications such as molecular dynamics simulations. Here, we introduce new quantum algorithms for computing molecular energy derivatives with significantly lower complexity than prior methods. Under cost models appropriate for noisy-intermediate scale quantum devices we demonstrate how low rank factorizations and other tomography schemes can be optimized for energy derivative calculations. We perform numerics revealing that our techniques reduce the number of circuit repetitions required by many orders of magnitude for even modest systems. In the context of fault-tolerant algorithms, we develop new methods of estimating energy derivatives with Heisenberg limited scaling incorporating state-of-the-art techniques for block encoding fermionic operators. Our results suggest that the calculation of forces on a single nuclei may be of similar cost to estimating energies of chemical systems, but that further developments are needed for quantum computers to meaningfully assist with molecular dynamics simulations. View details
    Preview abstract The most efficient known quantum circuits for preparing unitary coupled cluster states and applying Trotter steps of the arbitrary basis electronic structure Hamiltonian involve interleaved sequences of fermionic Gaussian circuits and Ising interaction type circuits. These circuits arise from factorizing the two-body operators generating those unitaries as a sum of squared one-body operators that are simulated using product formulas. We introduce a numerical algorithm for performing this factorization that has an iteration complexity no worse than single particle basis transformations of the two-body operators and often results in many times fewer squared one-body operators in the sum of squares compared to the analytical decompositions. As an application of this numerical procedure, we demonstrate that our protocol can be used to approximate generic unitary coupled cluster operators and prepare the necessary high-quality initial states for techniques (like ADAPT-VQE) that iteratively construct approximations to the ground state. View details
    Simulating Challenging Correlated Molecules and Materials on the Sycamore Quantum Processor
    Ruslan Tazhigulov
    Shi-Ning Sun
    Reza Haghshenas
    Huanchen Zhai
    Adrian Tan
    Austin Minnich
    Garnet Kin-Lic Chan
    PRX Quantum, vol. 3 (2022), pp. 040318
    Preview abstract Simulating complex molecules and materials is an anticipated application of quantum devices. With strong quantum advantage demonstrated in artificial tasks, we examine how such advantage translates into modeling physical problems, and in particular, strongly correlated electronic structure. We simulate static and dynamical electronic structure on a superconducting quantum processor derived from Google’s Sycamore architecture for two representative correlated electron problems: the nitrogenase iron-sulfur molecular clusters, and α-ruthenium trichloride, a proximate spin-liquid material. To do so, we simplify the electronic structure into low-energy spin models that fit on the device. With extensive error mitigation and assistance from classically simulated data, we achieve quantitatively meaningful results deploying about 1/5 of the gate resources used in artificial quantum advantage experiments on a similar architecture. This increases to over 1/2 of the gate resources when choosing a model that suits the hardware. Our work serves to convert artificial measures of quantum advantage into a physically relevant setting. View details
    Preview abstract An accurate assessment of how quantum computers can be used for chemical simulation, especially their potential computational advantages, provides important context on how to deploy these future devices. To perform this assessment reliably, quantum resource estimates must be coupled with classical computations attempting to answer relevant chemical questions and to define the classical algorithms simulation frontier. Herein, we explore the quantum computation and classical computation resources required to assess the electronic structure of cytochrome P450 enzymes (CYPs) and thus define a classical–quantum advantage boundary. This is accomplished by analyzing the convergence of density matrix renormalization group plus n-electron valence state perturbation theory (DMRG+NEVPT2) and coupled-cluster singles doubles with noniterative triples [CCSD(T)] calculations for spin gaps in models of the CYP catalytic cycle that indicate multireference character. The quantum resources required to perform phase estimation using qubitized quantum walks are calculated for the same systems. Compilation into the surface code provides runtime estimates to compare directly to DMRG runtimes and to evaluate potential quantum advantage. Both classical and quantum resource estimates suggest that simulation of CYP models at scales large enough to balance dynamic and multiconfigurational electron correlation has the potential to be a quantum advantage problem and emphasizes the important interplay between classical computations and quantum algorithms development for chemical simulation. View details
    Noise-resilient Majorana Edge Modes on a Chain of Superconducting Qubits
    Alejandro Grajales Dau
    Alex Crook
    Alex Opremcak
    Alexa Rubinov
    Alexander Korotkov
    Alexandre Bourassa
    Alexei Kitaev
    Alexis Morvan
    Andre Gregory Petukhov
    Andrew Dunsworth
    Andrey Klots
    Anthony Megrant
    Ashley Anne Huff
    Austin Fowler
    Benjamin Chiaro
    Benjamin Villalonga
    Bernardo Meurer Costa
    Bob Benjamin Buckley
    Brooks Foxen
    Charles Neill
    Christopher Schuster
    Cody Jones
    Daniel Eppens
    Dar Gilboa
    Dave Landhuis
    Dmitry Abanin
    Doug Strain
    Ebrahim Forati
    Edward Farhi
    Emily Mount
    Fedor Kostritsa
    Frank Carlton Arute
    Guifre Vidal
    Igor Aleiner
    Jamie Yao
    Jeremy Patterson Hilton
    Joao Basso
    John Mark Kreikebaum
    Joonho Lee
    Juan Atalaya
    Juhwan Yoo
    Justin Thomas Iveland
    Kannan Aryaperumal Sankaragomathi
    Kenny Lee
    Kim Ming Lau
    Kostyantyn Kechedzhi
    Kunal Arya
    Lara Faoro
    Leon Brill
    Marco Szalay
    Masoud Mohseni
    Michael Blythe Broughton
    Michael Newman
    Michel Henri Devoret
    Mike Shearn
    Nicholas Bushnell
    Orion Martin
    Paul Conner
    Pavel Laptev
    Ping Yeh
    Rajeev Acharya
    Rebecca Potter
    Reza Fatemi
    Roberto Collins
    Sergei Isakov
    Shirin Montazeri
    Steve Habegger
    Thomas E O'Brien
    Trent Huang
    Trond Ikdahl Andersen
    Vadim Smelyanskiy
    Vladimir Shvarts
    Wayne Liu
    William Courtney
    William Giang
    William J. Huggins
    Wojtek Mruczkiewicz
    Xiao Mi
    Yaxing Zhang
    Yu Chen
    Yuan Su
    Zhang Jiang
    Zijun Chen
    Science (2022) (to appear)
    Preview abstract Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the kicked Ising model which exhibits Majorana edge modes (MEMs) protected by a $\mathbb{Z}_2$-symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This finding allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Spectroscopic measurements further indicate exponentially suppressed hybridization between the MEMs over larger system sizes, which manifests as a strong resilience against low-frequency noise. Our work elucidates the noise sensitivity of symmetry-protected edge modes in a solid-state environment. View details
    Preview abstract One of the major application areas of interest for both near-term and fault-tolerant quantum computers is the optimization of classical objective functions. In this work, we develop intuitive constructions for a large class of these algorithms based on connections to simple dynamics of quantum systems, quantum walks, and classical continuous relaxations. We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement. This physical language, in combination with uniqueness results related to unitarity, allow us to identify some potential pitfalls from kinetic energy fundamentally opposing the goal of optimization. This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution. As an example, we explore the surprising deficiency of many quantum methods in solving uncoupled spin problems and how this is both predictive of performance on some more complex systems while immediately suggesting simple resolutions. Further examination of canonical problems like the Hamming ramp or bush of implications show that entanglement can be strictly detrimental to performance results from the underlying mechanism of solution in approaches like QAOA. Kinetic energy and graph Laplacian perspectives provide new insights to common initialization and optimal solutions in QAOA as well as new methods for more effective layerwise training. Connections to classical methods of continuous extensions, homotopy methods, and iterated rounding suggest new directions for research in quantum optimization. Throughout, we unveil many pitfalls and mechanisms in quantum optimization using a physical perspective, which aim to spur the development of novel quantum optimization algorithms and refinements. View details
    Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor
    Kevin Jeffery Sung
    Frank Carlton Arute
    Kunal Arya
    Juan Atalaya
    Rami Barends
    Michael Blythe Broughton
    Bob Benjamin Buckley
    Nicholas Bushnell
    Jimmy Chen
    Yu Chen
    Ben Chiaro
    Roberto Collins
    William Courtney
    Andrew Dunsworth
    Austin Fowler
    Brooks Riley Foxen
    Rob Graff
    Steve Habegger
    Sergei Isakov
    Zhang Jiang
    Cody Jones
    Kostyantyn Kechedzhi
    Alexander Korotkov
    Fedor Kostritsa
    Dave Landhuis
    Pavel Laptev
    Martin Leib
    Mike Lindmark
    Orion Martin
    John Martinis
    Anthony Megrant
    Xiao Mi
    Masoud Mohseni
    Wojtek Mruczkiewicz
    Josh Mutus
    Charles Neill
    Florian Neukart
    Thomas E O'Brien
    Bryan O'Gorman
    A.G. Petukhov
    Harry Putterman
    Andrea Skolik
    Vadim Smelyanskiy
    Doug Strain
    Michael Streif
    Marco Szalay
    Amit Vainsencher
    Jamie Yao
    Leo Zhou
    Edward Farhi
    Nature Physics (2021)
    Preview abstract Faster algorithms for combinatorial optimization could prove transformative for diverse areas such as logistics, finance and machine learning. Accordingly, the possibility of quantum enhanced optimization has driven much interest in quantum technologies. Here we demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the planar connectivity graph native to our hardware; however, we also apply the QAOA to the Sherrington–Kirkpatrick model and MaxCut, non-native problems that require extensive compilation to implement. For hardware-native problems, which are classically efficient to solve on average, we obtain an approximation ratio that is independent of problem size and observe that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size. Circuits involving several thousand gates still present an advantage over random guessing but not over some efficient classical algorithms. Our results suggest that it will be challenging to scale near-term implementations of the QAOA for problems on non-native graphs. As these graphs are closer to real-world instances, we suggest more emphasis should be placed on such problems when using the QAOA to benchmark quantum processors. View details
    Virtual Distillation for Quantum Error Mitigation
    William J. Huggins
    Sam Connor McArdle
    Thomas E O'Brien
    Joonho Lee
    Birgitta Whaley
    Physical Review X, vol. 11 (2021), pp. 041036
    Preview abstract Contemporary quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations, even with a large number of qubits. Quantum error correction is expected to eventually enable fault-tolerant quantum computation at large scales, but until then it will be necessary to use alternative strategies to mitigate the impact of errors. We propose a near-term friendly strategy to mitigate errors by entangling and measuring \(M\) copies of a noisy state \(\rho\). This enables us to estimate expectation values with respect to a state with dramatically reduced error, \(\rho^M/ \tr(\rho^M)\), without explicitly preparing it, hence the name ``virtual distillation''. As \(M\) increases, this state approaches the closest pure state to \(\rho\), exponentially quickly. We analyze the effectiveness of virtual distillation and find that it is governed in many regimes by the behaviour of this pure state (corresponding to the dominant eigenvector of \(\rho\)). We numerically demonstrate that virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how this effect is enhanced as the system size grows. Finally, we show that this technique can improve the convergence of randomized quantum algorithms, even in the absence of device noise. View details
    Preview abstract \texttt{p$^\dagger$q} is a C++ accelerated Python library designed to generate equations for many-body quantum chemistry methods and to realize proof-of-concept implementations of these equations for rapid prototyping. Central to this library is a simple interface to define strings of second-quantized creation and annihilation operators and to bring these strings to normal order with respect to either the true vacuum state or the Fermi vacuum. Tensor contractions over fully-contracted strings can then be evaluated using standard Python functions ({\em e.g.}, Numpy's einsum). Given one- and two-electron integrals these features allow for the rapid implementation and assessment of a wide array of many-body quantum quantum chemistry methods. View details
    Tuning Quantum Information Scrambling on a 53-Qubit Processor
    Alan Derk
    Alan Ho
    Alex Opremcak
    Alexander Korotkov
    Alexandre Bourassa
    Andre Gregory Petukhov
    Andrew Dunsworth
    Anthony Megrant
    Austin Fowler
    Bálint Pató
    Benjamin Chiaro
    Benjamin Villalonga
    Brooks Riley Foxen
    Charles Neill
    Cody Jones
    Daniel Eppens
    Dave Landhuis
    Doug Strain
    Edward Farhi
    Eric Ostby
    Fedor Kostritsa
    Frank Carlton Arute
    Igor Aleiner
    Jamie Yao
    Jeffrey Marshall
    Jeremy Patterson Hilton
    Jimmy Chen
    Josh Mutus
    Juan Atalaya
    Kostyantyn Kechedzhi
    Kunal Arya
    Marco Szalay
    Masoud Mohseni
    Matt Trevithick
    Michael Blythe Broughton
    Michael Newman
    Nicholas Bushnell
    Nicholas Redd
    Orion Martin
    Pavel Laptev
    Ping Yeh
    Rami Barends
    Roberto Collins
    Salvatore Mandra
    Sean Harrington
    Sergei Isakov
    Thomas E O'Brien
    Trent Huang
    Trevor Mccourt
    Vadim Smelyanskiy
    Vladimir Shvarts
    William Courtney
    Wojtek Mruczkiewicz
    Xiao Mi
    Yu Chen
    Zhang Jiang
    arXiv (2021)
    Preview abstract As entanglement in a quantum system grows, initially localized quantum information is spread into the exponentially many degrees of freedom of the entire system. This process, known as quantum scrambling, is computationally intensive to study classically and lies at the heart of several modern physics conundrums. Here, we characterize scrambling of different quantum circuits on a 53-qubit programmable quantum processor by measuring their out-of-time-order correlators (OTOCs). We observe that the spatiotemporal spread of OTOCs, as well as their circuit-to-circuit fluctuation, unravel in detail the time-scale and extent of quantum scrambling. Comparison with numerical results indicates a high OTOC measurement accuracy despite the large size of the quantum system. Our work establishes OTOC as an experimental tool to diagnose quantum scrambling at the threshold of being classically inaccessible. View details
    Fault-Tolerant Quantum Simulations of Chemistry in First Quantization
    Yuan Su
    Dominic W. Berry
    Nathan Wiebe
    PRX Quantum, vol. 2 (2021), pp. 040332
    Preview abstract Quantum simulations of chemistry in first quantization offer important advantages over approaches in second quantization including faster convergence to the continuum limit and the opportunity for practical simulations outside the Born-Oppenheimer approximation. However, as all prior work on quantum simulation in first quantization has been limited to asymptotic analysis, it has been impossible to compare the resources required for these approaches to those for more commonly studied algorithms in second quantization. Here, we analyze and optimize the resources required to implement two first quantized quantum algorithms for chemistry from Babbush et al that realize block encodings for the qubitization and interaction picture frameworks of Low et al. The two algorithms we study enable simulation with gate complexities O(η^{8/3} N^{1/3} t+η^{4/3} N^{2/3} t) and O(η^{8/3} N^{1/3} t) where η is the number of electrons, N is the number of plane wave basis functions, and t is the duration of time-evolution (t is inverse to target precision when the goal is to estimate energies). In addition to providing the first explicit circuits and constant factors for any first quantized simulation and introducing improvements which reduce circuit complexity by about a thousandfold over naive implementations for modest sized systems, we also describe new algorithms that asymptotically achieve the same scaling in a real space representation. We assess the resources required to simulate various molecules and materials and conclude that the qubitized algorithm will often be more practical than the interaction picture algorithm. We demonstrate that our qubitized algorithm often requires much less surface code spacetime volume for simulating millions of plane waves than the best second quantized algorithms require for simulating hundreds of Gaussian orbitals. View details
    Unbiasing Fermionic Quantum Monte Carlo with a Quantum Computer
    William J. Huggins
    Bryan O'Gorman
    David Reichman
    Joonho Lee
    Nature (2021)
    Preview abstract Interacting many-electron problems pose some of the greatest computational challenges in science, with essential applications across many fields. The solutions to these problems will offer accurate predictions of chemical reactivity and kinetics, and other properties of quantum systems. Fermionic quantum Monte Carlo (QMC) methods which use a statistical sampling of the ground state, are among the most powerful approaches to these problems. Controlling the fermionic sign problem with constraints ensures the efficiency of QMC at the expense of potentially significant biases owing to the limited flexibility of classical computation. Here we propose an approach that combines constrained QMC with quantum computation to reduce such biases. We implement our scheme experimentally using up to 16 qubits to unbias constrained QMC calculations performed on chemical systems with as many as 120 orbitals. These experiments represent the largest chemistry simulations performed with the help of quantum computers, while achieving accuracy that is competitive with state-of-the-art classical methods without burdensome error mitigation. Compared with the popular variational quantum eigensolver our hybrid quantum-classical computational model offers an alternative path towards achieving a practical quantum advantage for the electronic structure problem without demanding exceedingly accurate preparation and measurement of the ground-state wavefunction. View details
    What the foundations of quantum computer science teach us about chemistry
    Joonho Lee
    Thomas E O'Brien
    William J. Huggins
    Hsin-Yuan Huang
    Journal of Chemical Physics, vol. 155 (2021), pp. 150901
    Preview abstract With the rapid development of quantum technology, one of the leading applications that has been identified is the simulation of chemistry. Interestingly, even before full scale quantum computers are available, quantum computer science has exhibited a remarkable string of results that directly impact what is possible in chemical simulation, even with a quantum computer. Some of these results even impact our understanding of chemistry in the real world. In this perspective, we take the position that direct chemical simulation is best understood as a digital experiment. While on one hand this clarifies the power of quantum computers to extend our reach, it also shows us the limitations of taking such an approach too directly. Leveraging results that quantum computers cannot outpace the physical world, we build to the controversial stance that some chemical problems are best viewed as problems for which no algorithm can deliver their solution in general, known in computer science as undecidable problems. This has implications for the predictive power of thermodynamic models and topics like the ergodic hypothesis. However, we argue that this perspective is not defeatist, but rather helps shed light on the success of existing chemical models like transition state theory, molecular orbital theory, and thermodynamics as models that benefit from data. We contextualize recent results showing that data-augmented models are more powerful rote simulation. These results help us appreciate the success of traditional chemical theory and anticipate new models learned from experimental data. Not only can quantum computers provide data for such models, but they can extend the class and power of models that utilize data in fundamental ways. These discussions culminate in speculation on new ways for quantum computing and chemistry to interact and our perspective on the eventual roles of quantum computers in the future of chemistry. View details
    Efficient and Noise Resilient Measurements for Quantum Chemistry on Near-Term Quantum Computers
    William Huggins
    Zhang Jiang
    Nathan Wiebe
    K. Birgitta Whaley
    Nature Quantum Information, vol. 7 (2021)
    Preview abstract Variational algorithms are a promising paradigm for utilizing near-term quantum devices for modeling electronic states of molecular systems. However, previous bounds on the measurement time required have suggested that the application of these techniques to larger molecules might be infeasible. We present a measurement strategy based on a low-rank factorization of the two-electron integral tensor. Our approach provides a cubic reduction in term groupings over prior state-of-the-art and enables measurement times three orders of magnitude smaller than those suggested by commonly referenced bounds for the largest systems we consider. Although our technique requires execution of a linear-depth circuit prior to measurement, this is compensated for by eliminating challenges associated with sampling nonlocal Jordan–Wigner transformed operators in the presence of measurement error, while enabling a powerful form of error mitigation based on efficient postselection. We numerically characterize these benefits with noisy quantum circuit simulations for ground-state energies of strongly correlated electronic systems. View details
    The Fermionic Quantum Emulator
    Klaas Gunst
    Alec White
    Leon Freitag
    Kyle Throssell
    Garnet Kin-Lic Chan
    Toru Shiozaki
    Quantum, vol. 5 (2021), pp. 568
    Preview abstract The fermionic quantum emulator (FQE) is a collection of protocols for emulating quantum dynamics of fermions efficiently taking advantage of common symmetries present in chemical, materials, and condensed-matter systems. The library is fully integrated with the OpenFermion software package and serves as the simulation backend. The FQE reduces memory footprint by exploiting number and spin symmetry along with custom evolution routines for sparse and dense Hamiltonians, allowing us to study significantly larger quantum circuits at modest computational cost when compared against qubit state vector simulators. This release paper outlines the technical details of the simulation methods and key advantages. View details
    Exponential suppression of bit or phase flip errors with repetitive quantum error correction
    Alan Derk
    Alan Ho
    Alex Opremcak
    Alexander Korotkov
    Alexandre Bourassa
    Andre Gregory Petukhov
    Andrew Dunsworth
    Anthony Megrant
    Austin Fowler
    Bálint Pató
    Benjamin Chiaro
    Benjamin Villalonga
    Brooks Riley Foxen
    Charles Neill
    Cody Jones
    Daniel Eppens
    Dave Landhuis
    Doug Strain
    Edward Farhi
    Eric Ostby
    Fedor Kostritsa
    Frank Carlton Arute
    Igor Aleiner
    Jamie Yao
    Jeremy Patterson Hilton
    Jimmy Chen
    Josh Mutus
    Juan Atalaya
    Kostyantyn Kechedzhi
    Kunal Arya
    Marco Szalay
    Masoud Mohseni
    Matt Trevithick
    Michael Broughton
    Michael Newman
    Nicholas Bushnell
    Nicholas Redd
    Orion Martin
    Pavel Laptev
    Ping Yeh
    Rami Barends
    Roberto Collins
    Sean Harrington
    Sergei Isakov
    Thomas E O'Brien
    Trent Huang
    Trevor Mccourt
    Vadim Smelyanskiy
    Vladimir Shvarts
    William Courtney
    Wojtek Mruczkiewicz
    Xiao Mi
    Yu Chen
    Zhang Jiang
    Nature (2021)
    Preview abstract Realizing the potential of quantum computing will require achieving sufficiently low logical error rates. Many applications call for error rates below 10^-15, but state-of-the-art quantum platforms typically have physical error rates near 10^-3. Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits so that errors can be corrected. Logical errors are then exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold. QEC also requires that the errors are local, and that performance is maintained over many rounds of error correction, a major outstanding experimental challenge. Here, we implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors, reducing logical error per round by more than 100x when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analyzing error correlations with high precision, and characterize the locality of errors in a device performing QEC for the first time. Finally, we perform error detection using a small 2D surface code logical qubit on the same device, and show that the results from both 1D and 2D codes agree with numerical simulations using a simple depolarizing error model. These findings demonstrate that superconducting qubits are on a viable path towards fault tolerant quantum computing. View details
    Realizing topologically ordered states on a quantum processor
    Y.-J. Liu
    A. Smith
    C. Knapp
    M. Newman
    N. C. Jones
    Z. Chen
    X. Mi
    A. Dunsworth
    I. Aleiner
    F. Arute
    K. Arya
    J. Atalaya
    R. Barends
    J. Basso
    M. Broughton
    B. B. Buckley
    N. Bushnell
    B. Chiaro
    R. Collins
    W. Courtney
    A. R Derk
    D. Eppens
    L. Faoro
    E. Farhi
    B. Foxen
    A. Greene
    S. D. Harrington
    J. Hilton
    T. Huang
    W. J. Huggins
    S. V. Isakov
    Z. Jiang
    K. Kechedzhi
    A. N. Korotkov
    F. Kostritsa
    D. Landhuis
    P. Laptev
    O. Martin
    M. Mohseni
    S. Montazeri
    W. Mruczkiewicz
    J. Mutus
    C. Neill
    T. E. O'Brien
    A. Opremcak
    B. Pato
    A. Petukhov
    V. Shvarts
    D. Strain
    M. Szalay
    B. Villalonga
    Z. Yao
    P. Yeh
    J. Yoo
    A. Megrant
    Y. Chen
    V. Smelyanskiy
    A. Kitaev
    M. Knap
    F. Pollmann
    Science, vol. 374 (2021), pp. 1237-1241
    Preview abstract The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the emblematic toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy of Stopo ≈ −0.95 × ln 2 and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results illustrate the topological nature of these states and demonstrate their potential for implementing the surface code. View details
    Error Mitigation via Verified Phase Estimation
    Thomas E O'Brien
    Stefano Polla
    Bill Huggins
    Sam Connor McArdle
    PRX Quantum, vol. 2 (2021)
    Preview abstract We present a novel error mitigation technique for quantum phase estimation. By post-selecting the system register to be in the starting state, we convert all single errors prior to final measurement to a time-dependent decay (up to on average exponentially small corrections), which may be accurately corrected for at the cost of additional measurement. This error migitation can be built into phase estimation techniques that do not require control qubits. By separating the observable of interest into a linear combination of fast-forwardable Hamiltonians and measuring those components individually, we can convert this decay into a constant offset. Using this technique, we demonstrate the estimation of expectation values on numerical simulations of moderately-sized quantum circuits with multiple orders of magnitude improvement over unmitigated estimation at near-term error rates. We further combine verified phase estimation with the optimization step in a variational algorithm to provide additional mitigation of control error. In many cases, our results demonstrate a clear signature that the verification technique can mitigate against any single error occurring in an instance of a quantum computation: the error $\epsilon$ in the expectation value estimation scales with $p^2$, where $p$ is the probability of an error occurring at any point in the circuit. Further numerics indicate that our scheme remains robust in the presence of sampling noise, though different classical post-processing methods may lead to up to an order of magnitude error increase in the final energy estimates. View details
    Preview abstract Proposals for near-term experiments in quantum chemistry on quantum computers leverage the ability to target a subset of degrees of freedom containing the essential quantum behavior, sometimes called the active space. This approximation allows one to treat more difficult problems using fewer qubits and lower gate depths than would otherwise be possible. However, while this approximation captures many important qualitative features, it may leave the results wanting in terms of absolute accuracy (basis error) of the representation. In traditional approaches, increasing this accuracy requires increasing the number of qubits and an appropriate increase in circuit depth as well. Here we introduce a technique requiring no additional qubits or circuit depth that is able to remove much of this approximation in favor of additional measurements. The technique is constructed and analyzed theoretically, and some numerical proof of concept calculations are shown. As an example, we show how to achieve the accuracy of a 20 qubit representation using only 4 qubits and a modest number of additional measurements for a simple hydrogen molecule. We close with an outlook on the impact this technique may have on both near-term and fault-tolerant quantum simulations. View details
    Preview abstract Recent work has deployed linear combinations of unitaries techniques to significantly reduce the cost of performing fault-tolerant quantum simulations of correlated electron models. Here, we show that one can sometimes improve over those results with optimized implementations of Trotter-Suzuki-based product formulas. We show that low-order Trotter methods perform surprisingly well when used with phase estimation to compute relative precision quantities (e.g. energy per unit cell), as is often the goal for condensed-phase (e.g. solid-state) systems. In this context, simulations of the Hubbard model and plane wave electronic structure models with $N < 10^5$ fermionic modes can be performed with roughly O(1) and O(N^2) T complexities. We also perform numerics that reveal tradeoffs between the error of a Trotter step and Trotter step gate complexity across various implementations; e.g., we show that split-operator techniques have less Trotter error than popular alternatives. By compiling to surface code fault-tolerant gates using lattice surgery and assuming error rates of one part in a thousand, we show that one can error-correct quantum simulations of interesting, classically intractable instances with only a few hundred thousand physical qubits. View details
    Preview abstract With the rapid developments in quantum hardware comes a push towards the first practical applications on these devices. While fully fault-tolerant quantum computers may still be years away, one may ask if there exist intermediate forms of error correction or mitigation that might enable practical applications before then. In this work, we consider the idea of post-processing error decoders using existing quantum codes, which are capable of mitigating errors on encoded logical qubits using classical post-processing with no complicated syndrome measurements or additional qubits beyond those used for the logical qubits. This greatly simplifies the experimental exploration of quantum codes on near-term devices, removing the need for locality of syndromes or fast feed-forward, allowing one to study performance aspects of codes on real devices. We provide a general construction equipped with a simple stochastic sampling scheme that does not depend explicitly on a number of terms that we extend to approximate projectors within a subspace. This theory then allows one to generalize to the correction of some logical errors in the code space, correction of some physical unencoded Hamiltonians without engineered symmetries, and corrections derived from approximate symmetries. In this work, we develop the theory of the method and demonstrate it on a simple example with the perfect [[5,1,3]] code, which exhibits a pseudo-threshold of p≈0.50 under a single qubit depolarizing channel applied to all qubits. We also provide a demonstration under the application of a logical operation and performance on an unencoded hydrogen molecule, which exhibits a significant improvement over the entire range of possible errors incurred under a depolarizing channel. View details
    Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms
    Brooks Riley Foxen
    Charles Neill
    Andrew Dunsworth
    Ben Chiaro
    Anthony Megrant
    Jimmy Chen
    Rami Barends
    Frank Carlton Arute
    Kunal Arya
    Yu Chen
    Roberto Collins
    Edward Farhi
    Austin Fowler
    Rob Graff
    Trent Huang
    Sergei Isakov
    Zhang Jiang
    Kostyantyn Kechedzhi
    Alexander Korotkov
    Fedor Kostritsa
    Dave Landhuis
    Xiao Mi
    Masoud Mohseni
    Josh Mutus
    Vadim Smelyanskiy
    Amit Vainsencher
    Jamie Yao
    John Martinis
    arXiv:2001.08343 (2020)
    Preview abstract Quantum algorithms offer a dramatic speedup for computational problems in machine learning, material science, and chemistry. However, any near-term realizations of these algorithms will need to be heavily optimized to fit within the finite resources offered by existing noisy quantum hardware. Here, taking advantage of the strong adjustable coupling of gmon qubits, we demonstrate a continuous two qubit gate set that can provide a 5x reduction in circuit depth. We implement two gate families: an iSWAP-like gate to attain an arbitrary swap angle, $\theta$, and a CPHASE gate that generates an arbitrary conditional phase, $\phi$. Using one of each of these gates, we can perform an arbitrary two qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic Simulation, or fSim, gate set. We benchmark the fidelity of the iSWAP-like and CPHASE gate families as well as 525 other fSim gates spread evenly across the entire fSim($\theta$, $\phi$) parameter space achieving purity-limited average two qubit Pauli error of $3.8 \times 10^{-3}$ per fSim gate. View details
    Fermionic partial tomography via classical shadows
    Akimasa Miyake
    Andrew Zhao
    arXiv:2010.16094 (2020)
    Preview abstract We propose a tomographic protocol for estimating any $ k $-body reduced density matrix ($ k $-RDM) of an $ n $-mode fermionic state, a ubiquitous step in near-term quantum algorithms for simulating many-body physics, chemistry, and materials. Our approach extends the framework of classical shadows, a randomized approach to learning a collection of quantum state properties, to the fermionic setting. Our sampling protocol uses randomized measurement settings generated by a discrete group of fermionic Gaussian unitaries, implementable with linear-depth circuits. We prove that estimating all $ k $-RDM elements to additive precision $ \varepsilon $ requires on the order of $ \binom{n}{k} k^{3/2} \log(n) / \varepsilon^2 $ repeated state preparations, which is optimal up to the logarithmic factor. Furthermore, numerical calculations show that our protocol offers a substantial improvement in constant overheads for $ k \geq 2 $, as compared to prior deterministic strategies. We also adapt our method to particle-number symmetry, wherein the additional circuit depth may be halved at the cost of roughly 2--5 times more repetitions. View details
    Hartree-Fock on a Superconducting Qubit Quantum Computer
    Frank Carlton Arute
    Kunal Arya
    Rami Barends
    Michael Blythe Broughton
    Bob Benjamin Buckley
    Nicholas Bushnell
    Yu Chen
    Jimmy Chen
    Benjamin Chiaro
    Roberto Collins
    William Courtney
    Andrew Dunsworth
    Edward Farhi
    Austin Fowler
    Brooks Riley Foxen
    Rob Graff
    Steve Habegger
    Alan Ho
    Trent Huang
    William J. Huggins
    Sergei Isakov
    Zhang Jiang
    Cody Jones
    Kostyantyn Kechedzhi
    Alexander Korotkov
    Fedor Kostritsa
    Dave Landhuis
    Pavel Laptev
    Mike Lindmark
    Orion Martin
    John Martinis
    Anthony Megrant
    Xiao Mi
    Masoud Mohseni
    Wojtek Mruczkiewicz
    Josh Mutus
    Charles Neill
    Thomas E O'Brien
    Eric Ostby
    Andre Gregory Petukhov
    Harry Putterman
    Vadim Smelyanskiy
    Doug Strain
    Kevin Jeffery Sung
    Marco Szalay
    Tyler Y. Takeshita
    Amit Vainsencher
    Nathan Wiebe
    Jamie Yao
    Ping Yeh
    Science, vol. 369 (2020), pp. 6507
    Preview abstract As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry which involve twice the number of qubits and more than ten times the number of gates as the largest prior experiments. We model the binding energy of ${\rm H}_6$, ${\rm H}_8$, ${\rm H}_{10}$ and ${\rm H}_{12}$ chains as well as the isomerization of diazene. We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realize the Givens rotation approach to free fermion evolution, which we variationally optimize to prepare the Hartree-Fock wavefunction. This ubiquitous algorithmic primitive corresponds to a rotation of the orbital basis and is required by many proposals for correlated simulations of molecules and Hubbard models. Because free fermion evolutions are classically tractable to simulate, yet still generate highly entangled states over the computational basis, we use these experiments to benchmark the performance of our hardware while establishing a foundation for scaling up more complex correlated quantum simulations of chemistry. View details
    XY-mixers: analytical and numerical results for QAOA
    Eleanor Rieffel
    Jason M. Dominy
    Zhihui Wang
    Phys. Rev. A, vol. 101 (2020), pp. 012320
    Preview abstract The Quantum Alternating Operator Ansatz (QAOA) is a promising gate-model meta-heuristic for combinatorial optimization. Extending the algorithm to include hard constraints presents an implementation challenge for near-term quantum resources. This work explores strategies for enforcing hard constraints by using XY-hamiltonians as the mixer. Despite the complexity of the XY-Hamiltonian mixer, we demonstrate that for problems represented through one-hot-encoding, certain classes of the mixer Hamiltonian can be implemented without Trotter error in depth $O(\kappa)$ where $\kappa$ is the number of assignable colors. We also specify general strategies for implementing QAOA circuits on all-to-all connected graphs and linearly connected graphs inspired by fermionic simulation techniques. Performance is validated on graph coloring problems that are known to be challenging for a given classical algorithm. The general strategy of using the XY-mixers is validated numerically demonstrating a significant improvement over the general X-mixer. View details
    Using Models to Improve Optimizers for Variational Quantum Algorithms
    Kevin Jeffery Sung
    Jiahao Yao
    Zhang Jiang
    Lin Lin
    Quantum Science and Technology, vol. 5 (2020), pp. 044008
    Preview abstract Variational quantum algorithms are a leading candidate for early applications on noisy intermediate-scale quantum computers. These algorithms depend on a classical optimization outer-loop that minimizes some function of a parameterized quantum circuit. In practice, finite sampling error and gate errors make this a stochastic optimization with unique challenges that must be addressed at the level of the optimizer. The sharp trade-off between precision and sampling time in conjunction with experimental constraints necessitates the development of new optimization strategies to minimize overall wall clock time in this setting. We introduce an optimization method and numerically compare its performance with common methods in use today. The method is a simple surrogate model-based algorithm designed to improve reuse of collected data. It does so by estimating the gradient using a least-squares quadratic fit of sampled function values within a moving trusted region. To make fair comparisons between optimization methods, we develop experimentally relevant cost models designed to balance efficiency in testing and accuracy with respect to cloud quantum computing systems. The results here underscore the need to both use relevant cost models and optimize hyperparameters of existing optimization methods for competitive performance. We compare tuned methods using cost models presented by superconducting devices accessed through cloud computing platforms. The method introduced here has several practical advantages in realistic experimental settings, and has been used successfully in a separately published experiment on Google's Sycamore device. View details
    Accurately computing electronic properties of materials using eigenenergies
    Alan Derk
    Alan Ho
    Alex Opremcak
    Alexander Korotkov
    Andre Gregory Petukhov
    Andrew Dunsworth
    Anthony Megrant
    Austin Fowler
    Bálint Pató
    Benjamin Chiaro
    Benjamin Villalonga
    Bob Benjamin Buckley
    Brooks Riley Foxen
    Charles Neill
    Cody Jones
    Daniel Eppens
    Dave Landhuis
    Doug Strain
    Edward Farhi
    Eric Ostby
    Fedor Kostritsa
    Frank Carlton Arute
    Igor Aleiner
    Jamie Yao
    Jeremy Patterson Hilton
    Jimmy Chen
    Josh Mutus
    Juan Atalaya
    Juan Campero
    Kostyantyn Kechedzhi
    Kunal Arya
    Marco Szalay
    Masoud Mohseni
    Matt Jacob-Mitos
    Matt Trevithick
    Michael Blythe Broughton
    Michael Newman
    Nicholas Bushnell
    Nicholas Redd
    Orion Martin
    Pavel Laptev
    Ping Yeh
    Rami Barends
    Roberto Collins
    Sean Harrington
    Sergei Isakov
    Thomas E O'Brien
    Trent Huang
    Trevor Mccourt
    Vadim Smelyanskiy
    Vladimir Shvarts
    William Courtney
    William J. Huggins
    Wojtek Mruczkiewicz
    Xiao Mi
    Yu Chen
    Zhang Jiang
    arXiv preprint arXiv:2012.00921 (2020)
    Preview abstract A promising approach to study quantum materials is to simulate them on an engineered quantum platform. However, achieving the accuracy needed to outperform classical methods has been an outstanding challenge. Here, using superconducting qubits, we provide an experimental blueprint for a programmable and accurate quantum matter simulator and demonstrate how to probe fundamental electronic properties. We illustrate the underlying method by reconstructing the single-particle band-structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors and arrive at an accuracy in measuring energy eigenvalues of this wire with an error of ~0.01 radians, whereas typical energy scales are of order 1 radian. Insight into this unprecedented algorithm fidelity is gained by highlighting robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 1e-4 radians. Furthermore, we synthesize magnetic flux and disordered local potentials, two key tenets of a condensed-matter system. When sweeping the magnetic flux, we observe avoided level crossings in the spectrum, a detailed fingerprint of the spatial distribution of local disorder. Combining these methods, we reconstruct electronic properties of the eigenstates where we observe persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation and paves the way to study novel quantum materials with superconducting qubits. View details
    Quantum Supremacy using a Programmable Superconducting Processor
    Frank Arute
    Kunal Arya
    Rami Barends
    Rupak Biswas
    Fernando Brandao
    David Buell
    Yu Chen
    Jimmy Chen
    Ben Chiaro
    Roberto Collins
    William Courtney
    Andrew Dunsworth
    Edward Farhi
    Brooks Foxen
    Austin Fowler
    Rob Graff
    Keith Guerin
    Steve Habegger
    Michael Hartmann
    Alan Ho
    Trent Huang
    Travis Humble
    Sergei Isakov
    Zhang Jiang
    Kostyantyn Kechedzhi
    Sergey Knysh
    Alexander Korotkov
    Fedor Kostritsa
    Dave Landhuis
    Mike Lindmark
    Dmitry Lyakh
    Salvatore Mandrà
    Anthony Megrant
    Xiao Mi
    Kristel Michielsen
    Masoud Mohseni
    Josh Mutus
    Charles Neill
    Eric Ostby
    Andre Petukhov
    Eleanor G. Rieffel
    Vadim Smelyanskiy
    Kevin Jeffery Sung
    Matt Trevithick
    Amit Vainsencher
    Benjamin Villalonga
    Z. Jamie Yao
    Ping Yeh
    John Martinis
    Nature, vol. 574 (2019), 505–510
    Preview abstract The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2^53 (about 10^16). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm. View details
    Preview abstract Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic $n$-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic $n$-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments. View details
    OpenFermon: The Electronic Structure Package for Quantum Computers
    Ian D. Kivlichan
    Kevin Sung
    Damian Steiger
    Yudong Cao
    Chengyu Dai
    E. Schuyler Fried
    Brendan Gimby
    Thomas Häner
    Tarini Hardikar
    Vojtĕch Havlíček
    Cupjin Huang
    Zhang Jiang
    Thomas O'Brien
    Isil Ozfidan
    Jhonathan Romero
    Nicolas Sawaya
    Kanav Setia
    Sukin Sim
    Mark Steudtner
    Wei Sun
    Fang Zhang
    Quantum Science and Technology, vol. 5 (2017), pp. 034014
    Preview abstract Quantum simulation of chemistry and materials is predicted to be a key application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. Moreover, the package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations for design choices in OpenFermion and discusses some of the basic OpenFermion functionality available for the initial release of the package, which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area. View details
    No Results Found