Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10133 publications
Preview abstract
We focus on the problem of learning without forgetting from multiple tasks arriving sequentially, where each task is defined using a few-shot episode of novel or already seen classes. We approach this problem using the recently published HyperTransformer (HT), a Transformer-based hypernetwork that generates specialized task-specific CNN weights directly from the support set. In order to learn from a continual sequence of tasks, we propose to recursively re-use the generated weights as input to the HT for the next task. This way, the generated CNN weights themselves act as a representation of previously learned tasks, and the HT is trained to update these weights so that the new task can be learned without forgetting past tasks. This approach is different from most continual learning algorithms that typically rely on using replay buffers, weight regularization or task-dependent architectural changes. We demonstrate that our proposed Continual HyperTransformer method equipped with a prototypical loss is capable of learning and retaining knowledge about past tasks for a variety of scenarios, including learning from mini-batches, and task-incremental and class-incremental learning scenarios.
View details
Preview abstract
Motivated by the necessity of guiding and monitoring students' progress in real-time when assembling circuits during in-class activities we propose BlinkBoard, an augmented breadboard to enhance offline as well as online physical computing classes. BlinkBoard uses LEDs placed on each row of the breadboard to guide, via four blinking patterns, how to place and connect components and wires. It also uses a set of Input/Output pins to sense voltage levels at user-specified rows or to generate voltage output. Our hardware uses an open JSON protocol of commands and responses that can be integrated with a graphical application hosted on a computer that ensures bidirectional communication between each of the students' BreadBoard and the instructor's dashboard and slides. The hardware is affordable and simple, partially due to a customized circuit configured via a hardware description language that handles the LEDs' patterns with minimal load on the Arduino micro-controller. Finally, we briefly show how this hardware made its way to a workshop with high-school students and an undergraduate class in a design department.
View details
Conformal Language Modeling
Victor Quach
Adam Fisch
Adam Yala
Jae Ho Sohn
Tommi Jaakkola
Regina Barzilay
ICLR (2024)
Preview abstract
In this paper, we propose a novel approach to conformal prediction (CP) that is adapted to generative, large language models (LLMs). Conformal prediction is a popular technique for deriving prediction sets from machine learning models that have rigorous, statistical performance guarantees. We extend conformal techniques to a broad class of language models that sample from a conditional distribution over the combinatorial, unbounded space of possible text outputs, given some input prompt. Specifically, we translate the process of constructing prediction sets into calibrating a \emph{stopping rule}, under which we draw diverse samples from our model until we are confident that the growing set of candidate answers includes at least one high-quality response. At the same time, we calibrate a \emph{rejection rule} to selectively discard low-quality or redundant responses to reduce sample noise. Under minimal assumptions, we theoretically prove that our resulting output sets contain at least one high-quality answer with some desired probability that a user can set (such as $90\%$), while still remaining empirically precise on average. Furthermore, within this set of sampled candidate answers, we show that we can also accurately identify subsets of individual components (e.g., phrases or sentences) that are each independently correct (e.g., that are not ``hallucinations'')---again, with provably high probability. We demonstrate the effectiveness of our approach on multiple types of large language models applied to tasks in open-domain question answering, text summarization, and radiology report generation.
View details
Preview abstract
Given copies of a quantum state $\rho$, a shadow tomography protocol aims to learn all expectation values from a fixed set of observables, to within a given precision $\epsilon$. We say that a shadow tomography protocol is \textit{triply efficient} if it is sample- and time-efficient, and only employs measurements that entangle a constant number of copies of $\rho$ at a time. The classical shadows protocol based on random single-copy measurements is triply efficient for the set of local Pauli observables. This and other protocols based on random single-copy Clifford measurements can be understood as arising from fractional colorings of a graph $G$ that encodes the commutation structure of the set of observables. Here we describe a framework for two-copy shadow tomography that uses an initial round of Bell measurements to reduce to a fractional coloring problem in an induced subgraph of $G$ with bounded clique number. This coloring problem can be addressed using techniques from graph theory known as \textit{chi-boundedness}. Using this framework we give the first triply efficient shadow tomography scheme for the set of local fermionic observables, which arise in a broad class of interacting fermionic systems in physics and chemistry. We also give a triply efficient scheme for the set of all $n$-qubit Pauli observables. Our protocols for these tasks use two-copy measurements, which is necessary: sample-efficient schemes are provably impossible using only single-copy measurements. Finally, we give a shadow tomography protocol that compresses an $n$-qubit quantum state into a $\poly(n)$-sized classical representation, from which one can extract the expected value of any of the $4^n$ Pauli observables in $\poly(n)$ time, up to a small constant error.
View details
Efficient Language Model Architectures for Differentially Private Federated Learning
Yanxiang Zhang
Privacy Regulation and Protection in Machine Learning Workshop at ICLR 2024 (2024) (to appear)
Preview abstract
Cross-device federated learning (FL) is a technique that trains a model on data distributed across typically millions of edge devices without data ever leaving the devices.
SGD is the standard client optimizer for on device training in cross-device FL, favored for its memory and computational efficiency.
However, in centralized training of neural language models, adaptive optimizers are preferred as they offer improved stability and performance.
In light of this, we ask if language models can be modified such that they can be efficiently trained with SGD client optimizers and answer this affirmatively.
We propose a scale-invariant \emph{Coupled Input Forget Gate} (SI CIFG) recurrent network by modifying the sigmoid and tanh activations in the recurrent cell
and show that this new model converges faster and achieves better utility than the standard CIFG recurrent model in cross-device FL in large scale experiments.
We further show that the proposed scale invariant modification also helps in federated learning of larger transformer models.
Finally, we demonstrate the scale invariant modification is also compatible with other non-adaptive algorithms.
Particularly, our results suggest an improved privacy utility trade-off in federated learning with differential privacy.
View details
Assistive AI in Lung Cancer Screening: A Retrospective Multinational Study in the United States and Japan
Atilla Kiraly
Corbin Cunningham
Ryan Najafi
Jie Yang
Chuck Lau
Diego Ardila
Scott Mayer McKinney
Rory Pilgrim
Mozziyar Etemadi
Sunny Jansen
Lily Peng
Shravya Shetty
Neeral Beladia
Krish Eswaran
Radiology: Artificial Intelligence (2024)
Preview abstract
Lung cancer is the leading cause of cancer death world-wide with 1.8 million deaths in 20201. Studies have concluded that low-dose computed tomography lung cancer screening can reduce mortality by up to 61%2 and updated 2021 US guidelines expanded eligibility. As screening efforts rise, AI can play an important role, but must be unobtrusively integrated into existing clinical workflows. In this work, we introduce a state-of-the-art, cloud-based AI system providing lung cancer risk assessments without requiring any user input. We demonstrate its efficacy in assisting lung cancer screening under both US and Japanese screening settings using different patient populations and screening protocols. Technical improvements over a previously described system include a focus on earlier cancer detection for improved accuracy, introduction of an effective assistive user interface, and a system designed to integrate into typical clinical workflows. The stand-alone AI system was evaluated on 3085 individuals achieving area under the curve (AUC) scores of 91.7% (95%CI [89.6, 95.2]), 93.3% (95%CI [90.2, 95.7]), and 89.1% (95%CI [77.7, 97.3]) on three datasets (two from US and one from Japan), respectively. To evaluate the system’s assistive ability, we conducted two retrospective multi-reader multi-case studies on 627 cases read by experienced board certified radiologists (average 20 years of experience [7,40]) using local PACS systems in the respective US and Japanese screening settings. The studies measured the reader’s level of suspicion (LoS) and categorical responses for scores and management recommendations under country-specific screening protocols. The radiologists’ AUC for LoS increased with AI assistance by 2.3% (95%CI [0.1-4.5], p=0.022) for the US study and by 2.3% (95%CI [-3.5-8.1], p=0.179) for the Japan study. Specificity for recalls increased by 5.5% (95%CI [2.7-8.5], p<0.0001) for the US and 6.7% (95%CI [4.7-8.7], p<0.0001) for the Japan study. No significant reduction in other metrics occured. This work advances the state-of-the-art in lung cancer detection, introduces generalizable interface concepts that can be applicable to similar AI applications, and demonstrates its potential impact on diagnostic AI in global lung cancer screening with results suggesting a substantial drop in unnecessary follow-up procedures without impacting sensitivity.
View details
Quantifying urban park use in the USA at scale: empirical estimates of realised park usage using smartphone location data
Michael T Young
Swapnil Vispute
Stylianos Serghiou
Akim Kumok
Yash Shah
Kevin J. Lane
Flannery Black-Ingersoll
Paige Brochu
Monica Bharel
Sarah Skenazy
Shailesh Bavadekar
Mansi Kansal
Evgeniy Gabrilovich
Gregory A. Wellenius
Lancet Planetary Health (2024)
Preview abstract
Summary
Background A large body of evidence connects access to greenspace with substantial benefits to physical and mental
health. In urban settings where access to greenspace can be limited, park access and use have been associated with
higher levels of physical activity, improved physical health, and lower levels of markers of mental distress. Despite the
potential health benefits of urban parks, little is known about how park usage varies across locations (between or
within cities) or over time.
Methods We estimated park usage among urban residents (identified as residents of urban census tracts) in
498 US cities from 2019 to 2021 from aggregated and anonymised opted-in smartphone location history data. We
used descriptive statistics to quantify differences in park usage over time, between cities, and across census tracts
within cities, and used generalised linear models to estimate the associations between park usage and census tract
level descriptors.
Findings In spring (March 1 to May 31) 2019, 18·9% of urban residents visited a park at least once per week, with
average use higher in northwest and southwest USA, and lowest in the southeast. Park usage varied substantially
both within and between cities; was unequally distributed across census tract-level markers of race, ethnicity, income,
and social vulnerability; and was only moderately correlated with established markers of census tract greenspace. In
spring 2019, a doubling of walking time to parks was associated with a 10·1% (95% CI 5·6–14·3) lower average
weekly park usage, adjusting for city and social vulnerability index. The median decline in park usage from spring
2019 to spring 2020 was 38·0% (IQR 28·4–46·5), coincident with the onset of physical distancing policies across
much of the country. We estimated that the COVID-19-related decline in park usage was more pronounced for those
living further from a park and those living in areas of higher social vulnerability.
Interpretation These estimates provide novel insights into the patterns and correlates of park use and could enable
new studies of the health benefits of urban greenspace. In addition, the availability of an empirical park usage metric
that varies over time could be a useful tool for assessing the effectiveness of policies intended to increase such
activities.
View details
Building Recommendation Systems using Lambda Architecture
Vipul Bharat Marlecha
Sreyashi Das
International Research Journal of Engineering and Technology (IRJET), Volume: 11 Issue: 05 | May 2024 (2024)
Preview abstract
This paper studies the recommendation systems that are typical to content discovery and personalized services like Netflix and Amazon. The study includes typical components of recommendation systems, what data and inputs are required to serve depending on the machine learning models used. We share how the recommendations leverage a mix of batch processing and streaming databases, and end with trends and potential future developments for recommendation systems
View details
Preview abstract
Blood biomarkers are an essential tool for healthcare providers to diagnose, monitor, and treat a wide range of medical conditions. Establishing personalized blood biomarker ranges is crucial for accurate dis-ease diagnosis and management. Current clinical ranges often rely on population-level statistics, which may not adequately account for the substantial influence of inter-individual variability driven by factors such as lifestyle and genetics. In this work, we introduce a novel framework for predicting future blood biomarker values and personalized reference ranges through learned representations from lifestyle data (physical activity and sleep) and blood biomarkers. Our proposed method learns a similarity-based embedding space that aims to capture the complex relationship between biomarkers and lifestyle factors. UsingUK Biobank (257K participants), our results show that our deep-learned embeddings outperform traditional and cur-rent state-of-the-art representation learning techniques in predicting clinical diagnosis. Using a subset of UK Biobank of 6440 participants who have follow up visits, we validate that the inclusion of these embeddings and lifestyle factors directly in blood biomarker models improves the prediction of future lab values from a single lab visit. This personalized modeling approach provides a foundation for developing more accurate risk stratification tools and tailoring preventative care strategies. In clinical settings, this translates to the potential for earlier disease detection, more timely interventions, and ultimately, a shift towards personalized healthcare.
View details
Developer Ecosystems for Software Safety
Commun. ACM, 67(6) (2024), 52–60
Preview abstract
This paper reflects on work at Google over the past decade to address common types of software safety and security defects. Our experience has shown that software safety is an emergent property of the software and tooling ecosystem it is developed in and the production environment into which it is deployed. Thus, to effectively prevent common weaknesses at scale, we need to shift-left the responsibility for ensuring safety and security invariants to the end-to-end developer ecosystem, that is, programming languages, software libraries, application frameworks, build and deployment tooling, the production platform and its configuration surfaces, and so forth.
Doing so is practical and cost effective when developer ecosystems are designed with application archetypes in mind, such as web or mobile apps: The design of the developer ecosystem can address threat model aspects that apply commonly to all applications of the respective archetype, and investments to ensure safety invariants at the ecosystem level amortize across many applications.
Applying secure-by-design principles to developer ecosystems at Google has achieved drastic reduction and in some cases near-zero residual rates of common classes of defects, across hundreds of applications being developed by thousands of developers.
View details
Chain-of-Table: Evolves Tables in the LLM Reasoning Chain for Table Understanding
Zilong Wang
Hao Zhang
Chun-Liang Li
Jingbo Shang
ICLR (2024)
Preview abstract
Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM choices.
View details
Measuring Developer Experience with a Longitudinal Survey
Jessica Lin
Jill Dicker
IEEE Software (2024)
Preview abstract
At Google, we’ve been running a quarterly large-scale survey with developers since 2018. In this article, we will discuss how we run EngSat, some of our key learnings over the past 6 years, and how we’ve evolved our approach to meet new needs and challenges.
View details
Hardware-Assisted Fault Isolation: Going Beyond the Limits of Software-Based Sandboxing
Anjo Vahldiek-Oberwagner
Tal Garfinkel
Deian Stefan
Michael LeMay
Evan Johnson
Mohammadkazem Taram
Chris Fallin
Ravi Sahita
Joey Rudek
Shravan Narayan
Dean Tullsen
IEEE Micro (2024)
Preview abstract
Hardware-assisted Fault Isolation (HFI) is a minimal extension to current processors that supports secure, flexible, and efficient in-process isolation. HFI addresses the limitations of software-based isolation (SFI) systems including: runtime overheads, limited scalability, vulnerability to Spectre attacks, and limited compatibility with existing code. HFI can be seamlessly integrated into exisiting SFI systems (e.g. WebAssembly), or directly sandbox unmodified native binaries. To ease adoption, HFI proposes incremental changes to existing high-performance processors.
View details
Do Large Code Models Understand Programming Concepts? A Black Box Approach
Ashish Hooda
Aaron Wilson
Kassem Fawaz
Somesh Jha
(2024) (to appear)
Preview abstract
Large Language Models have been able to replicate their success from text generation to coding tasks. While a lot of work has made it clear that they have remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree do auto-regressive models understand the logical constructs of the underlying programs. We propose CAPP, a counterfactual testing framework to evaluate whether large code models understand programming concepts. With only black-box access to the model, we use CAPP to evaluate 10 popular large code models for 5 different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.
View details
Neural general circulation models for weather and climate
Dmitrii Kochkov
Janni Yuval
Jamie Smith
Griffin Mooers
Milan Kloewer
James Lottes
Peter Dueben
Samuel Hatfield
Peter Battaglia
Alvaro Sanchez
Matthew Willson
Nature, 632 (2024), pp. 1060-1066
Preview abstract
General circulation models (GCMs) are the foundation of weather and climate prediction. GCMs are physics-based simulators that combine a numerical solver for large-scale dynamics with tuned representations for small-scale processes such as cloud formation. Recently, machine-learning models trained on reanalysis data have achieved comparable or better skill than GCMs for deterministic weather forecasting. However, these models have not demonstrated improved ensemble forecasts, or shown sufficient stability for long-term weather and climate simulations. Here we present a GCM that combines a differentiable solver for atmospheric dynamics with machine-learning components and show that it can generate forecasts of deterministic weather, ensemble weather and climate on par with the best machine-learning and physics-based methods. NeuralGCM is competitive with machine-learning models for one- to ten-day forecasts, and with the European Centre for Medium-Range Weather Forecasts ensemble prediction for one- to fifteen-day forecasts. With prescribed sea surface temperature, NeuralGCM can accurately track climate metrics for multiple decades, and climate forecasts with 140-kilometre resolution show emergent phenomena such as realistic frequency and trajectories of tropical cyclones. For both weather and climate, our approach offers orders of magnitude computational savings over conventional GCMs, although our model does not extrapolate to substantially different future climates. Our results show that end-to-end deep learning is compatible with tasks performed by conventional GCMs and can enhance the large-scale physical simulations that are essential for understanding and predicting the Earth system.
View details