Jump to Content

Jonathan Clark

Jonathan Clark's research interests include multilingual modeling and trustworthy datasets & evaluation.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Automatic evaluation of machine translation (MT) is a critical tool driving the rapid iterative development of MT systems. While considerable progress has been made on direct estimation of quality scores, the resulting metrics lack the informativeness of more detailed schemes that annotate individual errors, such as Multidimensional Quality Metrics (MQM). In this paper, we fill this gap by proposing \textbf{\textsc{AutoMQM}}, a prompting technique which leverages the \textit{reasoning} and \textit{in-context learning} capabilities of large language models (LLMs) and asks them to identify and categorize errors in translations. We start by evaluating recent LLMs, such as PaLM and PaLM-2, through simple \textit{score prediction} prompting, and we study the impact of labeled data through in-context learning and finetuning. We then evaluate \textsc{AutoMQM} with PaLM-2 models, and we find that it improves performance compared to just prompting for scores (with particularly large gains for larger models) while providing interpretability through error spans that align with human annotations. View details
    XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
    Sebastian Ruder
    Shruti Rijhwani
    Jean-Michel Sarr
    Cindy Wang
    John Wieting
    Christo Kirov
    Dana L. Dickinson
    Bidisha Samanta
    Connie Tao
    David Adelani
    Reeve Ingle
    Dmitry Panteleev
    Findings of the Association for Computational Linguistics: EMNLP 2023, Association for Computational Linguistics, Singapore, pp. 1856-1884
    Preview abstract Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) — languages for which NLP research is particularly far behind in meeting user needs — it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks — tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models. View details
    Preview abstract We introduce \xtremes, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, retrieval and speech-to-text translation. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in ``universal'' speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. The code and pre-processing scripts will be made publicly available.\footnote{\small\url{https://huggingface.co/datasets/google/xtreme_s}} View details
    CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Understanding
    Iulia Turc
    John Wieting
    Transactions of the Association for Computational Linguistics (2022)
    Preview abstract Pipelined NLP systems have largely been superseded by end-to-end neural modeling, yet nearly all commonly-used models still require an explicit tokenization step. While recent tokenization approaches based on data-derived subword lexicons are less brittle than manually engineered tokenizers, these techniques are not equally suited to all languages, and the use of any fixed vocabulary may limit a model's ability to adapt. In this paper, we present CANINE, a neural encoder that operates directly on character sequences, without explicit tokenization or vocabulary, and a pre-training strategy with soft inductive biases in place of hard token boundaries. To use its finer-grained input effectively and efficiently, CANINE combines downsampling, which reduces the input sequence length, with a deep transformer stack, which encodes context. CANINE outperforms a comparable mBERT model by >=1 F1 on TyDi QA, a challenging multilingual benchmark, despite having 28% fewer model parameters. View details
    Preview abstract Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA, a question answering dataset covering 11 typologically diverse languages. Until recently, most multilingual research in natural language processing has been limited to machine translation or to technical tasks such as tagging and parsing. Question answering offers a scenario that is natural in that non-technical users intuitively understand the task, allowing high quality data collection in the absence of abundant annotators with expertise in both linguistics and the language of interest. This allows us select languages that are diverse with regard to their typology -- the set of linguistic features that each language expresses. We expect that models that can perform well on this set will generalize across a large number of the languages in the world. To encourage a more realistic distribution, the data is collected entirely in each native language without the use of translation (human or otherwise) and question creation is performed without seeing the answers. We present a quantitative analysis of the data quality, we provide example-level linguistic analyses and glosses of language phenomena that would not be found in English-only corpora, and we measure the performance of baseline systems. View details
    No Results Found