Jump to Content
Nitish Gupta

Nitish Gupta

Nitish Gupta is a Research Scientist at Google working on developing multilingual Large Language Models (LLMs). He received a Ph.D. in Computer Science in 2021 from the University of Pennsylvania. Before that, he completed a dual undergraduate and masters degree in 2015 from the Indian Institute of Technology, Kanpur.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Bootstrapping Multilingual Semantic Parsers using Large Language Models
    Abhijeet Awasthi
    Bidisha Samanta
    Sunita Sarawagi
    Conference of the European Chapter of the Association for Computational Linguistics (EACL) (2023)
    Preview abstract Despite cross-lingual generalization demonstrated by pre-trained multilingual models, the translate-and-train paradigm of transferring English datasets across multiple languages remains to be the key ingredient for training task-specific multilingual models. However, for many low-resource languages, the availability of a reliable translation service entails significant amounts of costly human annotated translation pairs. Further, the translation services for low resource languages may continue to be brittle due to domain mismatch between the task-specific input text and the general-purpose text used while training the translation models. We consider the task of multilingual semantic parsing, and demonstrate the effectiveness and the flexibility offered by large language models (LLMs) for translating English datasets into several languages via few-shot prompting. We provide (i) Extensive comparisons with prior translate-and-train methods across 50 languages demonstrating that LLMs can serve as highly effective data translators, outperforming prior translation based methods on 40 out of 50 languages; (ii) A comprehensive study of the key design choices that enable effective data translation via prompted LLMs. View details
    XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
    Sebastian Ruder
    Shruti Rijhwani
    Jean-Michel Sarr
    Cindy Wang
    John Wieting
    Christo Kirov
    Dana L. Dickinson
    Bidisha Samanta
    Connie Tao
    David Adelani
    Reeve Ingle
    Dmitry Panteleev
    Findings of the Association for Computational Linguistics: EMNLP 2023, Association for Computational Linguistics, Singapore, pp. 1856-1884
    Preview abstract Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) — languages for which NLP research is particularly far behind in meeting user needs — it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks — tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text only, multi-modal (vision, audio, and text), supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models. View details
    No Results Found