Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10129 publications
Factual and Personalized Recommendation Language Modeling with Reinforcement Learning
Jihwan Jeong
Mohammad Ghavamzadeh
Proceedings of the First Conference on Language Modeling (COLM-24), Philadelphia (2024)
Preview abstract
Recommender systems (RSs) play a central role in connecting users to products, content and services by matching candidate items to users based on their preferences. While existing RSs often rely on implicit user feedback on recommended items (e.g., clicks, watches, ratings), conversational recommender systems are interacting with users to provide tailored recommendations in natural language. In this work, we aim to develop a recommender language model (LM) that is capable of generating compelling endorsement presentations of relevant items to users, to better explain the details of the items, to connect the items with users’ preferences, and to enhance the likelihood of users accepting recommendations. Specifically, such an LLM-based recommender can understand users’ preferences from users’ RS embeddings summarizing feedback history, output corresponding responses that not only are factually-grounded, but also explain whether these items satisfy users’ preferences in a convincing manner. The pivotal question is how one can gauge the performance of such a LLM recommender. Equipped with a joint reward function that measures factual consistency, convincingness, and personalization, not only can we evaluate the efficacies of different recommender LMs, but we can also utilize this metric as a form of AI feedback to fine-tune our LLM agent via reinforcement learning (RL). Building upon the MovieLens movie recommendation benchmark, we developed a novel conversational recommender delivering personalized movie narratives to users. This work lays the groundwork for recommendation systems that prioritize individualized user experiences without compromising on transparency and integrity.
View details
Preview abstract
We're roughly 10 years into the OpenConfig journey. We have implementations in hand from various vendors, and we've gained significant operational experience in the domains of Streaming Telemetry and in Developing Configuration Systems to leverage the developed models. What have we learned? Are the abstractions we've generated the right ones? If not, why? Were we too influenced by the tools and inertia of the time when we made some critical decisions? How do we need to evolve going forward? This discussion is part retrospective/introspective, a candid look at where we've been and what we need to think about as we evolve the next generation of our management (and control) planes. What should we be thinking about as network engineers who write software?
View details
Automatic Speech Recognition of Conversational Speech in Individuals with Disordered Speech
Bob MacDonald
Rus Heywood
Richard Cave
Katie Seaver
Antoine Desjardins
Jordan Green
Journal of Speech, Language, and Hearing Research (2024) (to appear)
Preview abstract
Purpose: This study examines the effectiveness of automatic speech recognition (ASR) for individuals with speech disorders, addressing the gap in performance between read and conversational ASR. We analyze the factors influencing this disparity and the effect of speech mode-specific training on ASR accuracy.
Method: Recordings of read and conversational speech from 27 individuals with various speech disorders were analyzed using both (1) one speaker-independent ASR system trained and optimized for typical speech and (2) multiple ASR models that were personalized to the speech of the participants with disordered speech. Word Error Rates (WERs) were calculated for each speech mode, read vs conversational, and subject. Linear mixed-effect models were used to assess the impact of speech mode and disorder severity on ASR accuracy. We investigated nine variables, classified as technical, linguistic, or speech impairment factors, for their potential influence on the performance gap.
Results: We found a significant performance gap between read and conversational speech in both personalized and unadapted ASR models. Speech impairment severity notably impacted recognition accuracy in unadapted models for both speech modes and in personalized models for read speech. Linguistic attributes of utterances were the most influential on accuracy, though atypical speech characteristics also played a role. Including conversational speech samples in model training notably improved recognition accuracy.
Conclusions: We observed a significant performance gap in ASR accuracy between read and conversational speech for individuals with speech disorders. This gap was largely due to the linguistic complexity and unique characteristics of speech disorders in conversational speech. Training personalized ASR models using conversational speech significantly improved recognition accuracy, demonstrating the importance of domain-specific training and highlighting the need for further research into ASR systems capable of handling disordered conversational speech effectively.
View details
Rambler: Supporting Writing With Speech via LLM-Assisted Gist Manipulation
Susan Lin
Jeremy Warner
J.D. Zamfirescu-Pereira
Matthew G Lee
Sauhard Jain
Michael Xuelin Huang
Bjoern Hartmann
Can Liu
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, NY, USA
Preview abstract
Dictation enables efficient text input on mobile devices. However, writing with speech can produce disfluent, wordy, and incoherent text and thus requires heavy post-processing. This paper presents Rambler, an LLM-powered graphical user interface that supports gist-level manipulation of dictated text with two main sets of functions: gist extraction and macro revision. Gist extraction generates keywords and summaries as anchors to support the review and interaction with spoken text. LLM-assisted macro revisions allow users to respeak, split, merge, and transform dictated text without specifying precise editing locations. Together they pave the way for interactive dictation and revision that help close gaps between spontaneously spoken words and well-structured writing. In a comparative study with 12 participants performing verbal composition tasks, Rambler outperformed the baseline of a speech-to-text editor + ChatGPT, as it better facilitates iterative revisions with enhanced user control over the content while supporting surprisingly diverse user strategies.
View details
Multimodal Web Navigation with Instruction-Finetuned Foundation Models
Hiroki Furuta
Ofir Nachum
Yutaka Matsuo
Shane Gu
Izzeddin Gur
International Conference on Learning Representations (ICLR) (2024)
Instant 3D Human Avatar Generation using Image Diffusion Models
Enric Corona
European Conference on Computer Vision (ECCV) (2024)
Preview abstract
We present AvatarPopUp, a method for fast, high quality 3D human avatar generation from different input modalities, such as images and text prompts and with control over the generated pose and shape. The common theme is the use of diffusion-based image generation networks that are specialized for each particular task, followed by a 3D lifting network. We purposefully decouple the generation from the 3D modeling which allow us to leverage powerful image synthesis priors, trained on billions of text-image pairs. We fine-tune latent diffusion networks with additional image conditioning for image generation and back-view prediction, and to support qualitatively different multiple 3D hypotheses. Our partial fine-tuning approach allows to adapt the networks for each task without inducing catastrophic forgetting. In our experiments, we demonstrate that our method produces accurate, high-quality 3D avatars with diverse appearance that respect the multimodal text, image, and body control signals. Our approach can produce a 3D model in as few as 2 seconds, a four orders of magnitude speedup w.r.t. the vast majority of existing methods, most of which solve only a subset of our tasks, and with fewer controls. AvatarPopUp enables applications that require the controlled 3D generation of human avatars at scale.
View details
Its All Relative! -- A Synthetic Query Generation Approach for Improving Zero-Shot Relevance Prediction
Findings of the Association for Computational Linguistics: NAACL 2024
Preview abstract
Recent developments in large language models (LLMs) have shown promise in their ability to generate synthetic query-document pairs by prompting LLMs with as few as 8 demonstrations \cite{dai2022promptagator}.
This has enabled building better IR models especially for tasks which have no training data readily available.
Typically, such synthetic query generation (QGen) approaches condition on an input context (e.g. document) and generate a query that is relevant to that context or condition the QGen model additionally on the relevance label (e.g. relevant vs irrelevant) to generate queries across relevance buckets.
However, we find that such QGen approaches are sub-optimal as it requires the model to reason about the desired label and the input from only a handful of examples, which is not trivial, especially when the relevance buckets are nuanced.
In this work, we propose to reduce this burden of LLMs by generating queries simultaneously for different labels (e.g. relevance buckets).
We hypothesize that instead of asking the model to generate, say, an irrelevant query given an input context, asking the model to generate an irrelevant query with respect to a relevant query is a much simpler task setup for the model to reason about.
Extensive experimentation across seven IR datasets shows that synthetic queries generated in such a fashion translates to a better downstream performance, suggesting that the generated queries are indeed of higher quality.
View details
Preview abstract
Evaluation of instruction following capabilities for multi-modal, multi-turn chat is challenging. With potentially multiple instructions in the input model context, the task is time-consuming for human raters and we show that LLM based judges are biased towards answers from the same model. We propose a new evaluation set, MMMT-IF, an image based multi-turn Q\&A task with added global instructions between questions, constraining the format of the answers. This reveals limitations of current models for following multiple instructions and is challenging as the models need to first retrieve multiple instructions spread out in the long chat history, and then reason over them to answer image based questions with instruction constraints. All the instructions and constraints are program verifiable, i.e., verifying them is objective. We propose a set of metrics referred to as Programmatic Instruction Following (PIF) to measure the fraction of the instructions that are correctly followed while performing a reasoning task, and PIF-TOP-N-K, to measure the fraction of time at least K out of N sampled model responses achieve PIF score of one. This is our most challenging metric, targeting both instruction following and robustness. We show that our proposed approach for evaluation of instruction following with the PIF metric is also aligned with ratings from humans, with over 70 percent correlation. Our experiments show that the models studied in this work, Gemini 1.5 Pro, GPT-4o, and Claude Sonnet 3.5, have a PIF metric that significantly deteriorate for long chats, highlighting an area with a significant headroom for improvement. Across all chat turns when each response is repeated 4 times (PIF-TOP-4-4), GPT-4o and Gemini are only able to successfully follow all instructions 11 percent of the time. When in addition to have instructions dispersed throughout the model input context, all the instructions are also added in the end of the model input context, we see an average 22.3 point improvement in the PIF metric, showing that the challenge with the task lies not only in following the instructions, but also in retrieving the instructions from the model context.
View details
Compressing Search with Language Models
Jennifer Steele
Preview abstract
Millions of people turn to Google Search each day for information on things as diverse as new cars or flu symptoms. The terms that they enter contain valuable information on their daily intent and activities, but the information in these search terms has been difficult to fully leverage. User-defined categorical filters have been the most common way to shrink the dimensionality of search data to a tractable size for analysis and modeling. In this paper we present a new approach to reducing the dimensionality of search data while retaining much of the information in the individual terms without user-defined rules. Our contributions are two-fold: 1) we introduce SLaM Compression, a way to quantify search terms using pre-trained language models and create a representation of search data that has low dimensionality, is memory efficient, and effectively acts as a summary of search, and 2) we present CoSMo, a Constrained Search Model for estimating real world events using only search data. We demonstrate the efficacy of our contributions by estimating with high accuracy U.S. automobile sales and U.S. flu rates using only Google Search data.
View details
Scalable Learning of Segment-Level Traffic Congestion Functions
Shushman Choudhury
Aboudy Kreidieh
Alexandre Bayen
IEEE Intelligent Transportation Systems Conference (2024)
Preview abstract
We propose and study a data-driven framework for identifying traffic congestion functions (numerical relationships between observations of traffic variables) at global scale and segment-level granularity. In contrast to methods that estimate a separate set of parameters for each roadway, ours learns a single black-box function over all roadways in a metropolitan area. First, we pool traffic data from all segments into one dataset, combining static attributes with dynamic time-dependent features. Second, we train a feed-forward neural network on this dataset, which we can then use on any segment in the area. We evaluate how well our framework identifies congestion functions on observed segments and how it generalizes to unobserved segments and predicts segment attributes on a large dataset covering multiple cities worldwide. For identification error on observed segments, our single data-driven congestion function compares favorably to segment-specific model-based functions on highway roads, but has room to improve on arterial roads. For generalization, our approach shows strong performance across cities and road types: both on unobserved segments in the same city and on zero-shot transfer learning between cities. Finally, for predicting segment attributes, we find that our approach can approximate critical densities for individual segments using their static properties.
View details
KATch: A Fast Symbolic Verifier for NetKAT
Mark Moeller
Jules Jacobs
Olivier Savary Belanger
David Darais
Cole Schlesinger
Nate Foster
Alexandra Silva
Programming Languages and Implementation (PLDI) (2024) (to appear)
Preview abstract
We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches.
View details
Preview abstract
This paper presents a Multifunctional wearable
sensing system that integrates flexible Laser-Induced-Graphene
(LIG) based sensors and an Open-Source Analog Front-End
(AFE) chip. The LIG sensors are fabricated on polyimide (PI)
Flexible Printed Circuit Board (FPCB) through CO2 infrared
laser direct-write method. The LIG sensors provide repeatable
high-precision temperature sensing, humidity measurement, and
strain detection capabilities. The temperature sensing charac-
terization shows the resistive LIG sensor has a sensitivity of
-0.0493 %/°C, the linear fit R-square factors ≥ 0.9973 across -40
°C to 125 °C. The capacitive humidity sensor achieves a 23.6
times capacitance at 95% relative humidity (RH) compared to
the value observed in a dry environment. Our proposed AFE
chip contains a hybrid folded-cascode Operational Amplifier
(OPAMP) and a Successive Approximation Register Analog-
to-Digital Converter (SAR ADC). Designed using open-source
analog flow and fabricated in GF180 OpenPDK, the AFE chip
serves as a flexible and universal readout platform, adaptable for
various sensing applications. A real-time demonstration of finger
bending detection is performed to validate the functionality.
The multifunctional sensing capability provide by the wearable
system is attractive for personal healthcare application. This
work underscores the integration of the LIG sensors and the
AFE chip, developed using open-source tools which facilitate
rapid and affordable prototyping for a multifunctional flexible
wearable sensing system.
View details
Socio-spatial equity analysis of relative wealth index and emergency obstetric care accessibility in urban Nigeria
Kerry L. M. Wong
Aduragbemi Banke-Thomas
Tope Olubodun
Peter M. Macharia
Charlotte Stanton
Narayanan Sundararajan
Yash Shah
Mansi Kansal
Swapnil Vispute
Olakunmi Ogunyemi
Uchenna Gwacham-Anisiobi
Jia Wang
Ibukun-Oluwa Omolade Abejirinde
Prestige Tatenda Makanga
Bosede B. Afolabi
Lenka Beňová
Communications Medicine, 4 (2024), pp. 34
Preview abstract
Background
Better geographical accessibility to comprehensive emergency obstetric care (CEmOC) facilities can significantly improve pregnancy outcomes. However, with other factors, such as affordability critical for care access, it is important to explore accessibility across groups. We assessed CEmOC geographical accessibility by wealth status in the 15 most-populated Nigerian cities.
Methods
We mapped city boundaries, verified and geocoded functional CEmOC facilities, and assembled population distribution for women of childbearing age and Meta’s Relative Wealth Index (RWI). We used the Google Maps Platform’s internal Directions Application Programming Interface to obtain driving times to public and private facilities. City-level median travel time (MTT) and number of CEmOC facilities reachable within 60 min were summarised for peak and non-peak hours per wealth quintile. The correlation between RWI and MTT to the nearest public CEmOC was calculated.
Results
We show that MTT to the nearest public CEmOC facility is lowest in the wealthiest 20% in all cities, with the largest difference in MTT between the wealthiest 20% and least wealthy 20% seen in Onitsha (26 vs 81 min) and the smallest in Warri (20 vs 30 min). Similarly, the average number of public CEmOC facilities reachable within 60 min varies (11 among the wealthiest 20% and six among the least wealthy in Kano). In five cities, zero facilities are reachable under 60 min for the least wealthy 20%. Those who live in the suburbs particularly have poor accessibility to CEmOC facilities.
Conclusions
Our findings show that the least wealthy mostly have poor accessibility to care. Interventions addressing CEmOC geographical accessibility targeting poor people are needed to address inequities in urban settings.
View details
Distributed Tracing for InterPlanetary File System
Marshall David Miller
Rachel Han
Haorui Guo
2024 International Symposium on Parallel Computing and Distributed Systems (PCDS), IEEE, pp. 1-5
Preview abstract
The InterPlanetary File System (IPFS) is on its way to becoming the backbone of the next generation of the web. However, it suffers from several performance bottlenecks, particularly on the content retrieval path, which are often difficult to debug. This is because content retrieval involves multiple peers on the decentralized network and the issue could lie anywhere in the network. Traditional debugging tools are insufficient to help web developers who face the challenge of slow loading websites and detrimental user experience. This limits the adoption and future scalability of IPFS.
In this paper, we aim to gain valuable insights into how content retrieval requests propagate within the IPFS network as well as identify potential performance bottlenecks which could lead to opportunities for improvement. We propose a custom tracing framework that generates and manages traces for crucial events that take place on each peer during content retrieval. The framework leverages event semantics to build a timeline of each protocol involved in the retrieval, helping developers pinpoint problems. Additionally, it is resilient to malicious behaviors of the peers in the decentralized environment.
We have implemented this framework on top of an existing IPFS implementation written in Java called Nabu. Our evaluation shows that the framework can identify network delays and issues with each peer involved in content retrieval requests at a very low overhead.
View details
Beyond dashboards: LLM-powered insights for next generation of business intelligence
AIM Research (2024)
Preview abstract
The articles delves into the promise of AI in business intelligence. It briefly reviews the evolution of BI and various Cloud tools, followed by the paradigm shift in how data is consumed. While AI brings huge potential, the article covers areas that enterprises must exercise caution over, when building intelligent agents to answer data questions.
View details