Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10133 publications
    Preview abstract We present PhoMoH, a neural network methodology to construct generative models of photo-realistic 3D geometry and appearance of human heads including hair, beards, an oral cavity, and clothing. In contrast to prior work, PhoMoH models the human head using neural fields, thus supporting complex topology. Instead of learning a head model from scratch, we propose to augment an existing expressive head model with new features. Concretely, we learn a highly detailed geometry network layered on top of a mid-resolution head model together with a detailed, local geometry-aware, and disentangled color field. Our proposed architecture allows us to learn photo-realistic human head models from relatively little data. The learned generative geometry and appearance networks can be sampled individually and enable the creation of diverse and realistic human heads. Extensive experiments validate our method qualitatively and across different metrics. View details
    LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D Signals
    Arjun Karpur
    Guilherme Perrotta
    Ricardo Martin-Brualla
    Proc. 3DV'24 (2024) (to appear)
    Preview abstract Finding localized correspondences across different images of the same object is crucial to understand its geometry. In recent years, this problem has seen remarkable progress with the advent of deep learning-based local image features and learnable matchers. Still, learnable matchers often underperform when there exists only small regions of co-visibility between image pairs (i.e. wide camera baselines). To address this problem, we leverage recent progress in coarse single-view geometry estimation methods. We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks and enhances their capabilities by integrating noisy, estimated 3D signals to boost correspondence estimation. When integrating 3D signals into the matcher model, we show that a suitable positional encoding is critical to effectively make use of the low-dimensional 3D information. We experiment with two different 3D signals - normalized object coordinates and monocular depth estimates - and evaluate our method on large-scale (synthetic and real) datasets containing object-centric image pairs across wide baselines. We observe strong feature matching improvements compared to 2D-only methods, with up to +6% total recall and +28% precision at fixed recall. Additionally, we demonstrate that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs - up to 8.6% compared to the 2D-only approach. View details
    Preview abstract Google Cloud SQL customers encounter PostgreSQL bugs corrupting databases, rarely but reproducibly. This talk will cover use of tools, especially amcheck, to grasp these bugs sufficiently to write fixes and test cases. Those fixes are now part of core PostgreSQL. It will include lessons for avoiding such bugs in future PostgreSQL development. Finally, it will share a diagnostic feature wish list. View details
    Factual and Personalized Recommendation Language Modeling with Reinforcement Learning
    Jihwan Jeong
    Mohammad Ghavamzadeh
    Proceedings of the First Conference on Language Modeling (COLM-24), Philadelphia (2024)
    Preview abstract Recommender systems (RSs) play a central role in connecting users to products, content and services by matching candidate items to users based on their preferences. While existing RSs often rely on implicit user feedback on recommended items (e.g., clicks, watches, ratings), conversational recommender systems are interacting with users to provide tailored recommendations in natural language. In this work, we aim to develop a recommender language model (LM) that is capable of generating compelling endorsement presentations of relevant items to users, to better explain the details of the items, to connect the items with users’ preferences, and to enhance the likelihood of users accepting recommendations. Specifically, such an LLM-based recommender can understand users’ preferences from users’ RS embeddings summarizing feedback history, output corresponding responses that not only are factually-grounded, but also explain whether these items satisfy users’ preferences in a convincing manner. The pivotal question is how one can gauge the performance of such a LLM recommender. Equipped with a joint reward function that measures factual consistency, convincingness, and personalization, not only can we evaluate the efficacies of different recommender LMs, but we can also utilize this metric as a form of AI feedback to fine-tune our LLM agent via reinforcement learning (RL). Building upon the MovieLens movie recommendation benchmark, we developed a novel conversational recommender delivering personalized movie narratives to users. This work lays the groundwork for recommendation systems that prioritize individualized user experiences without compromising on transparency and integrity. View details
    Preview abstract In the present computerized period, information driven navigation is essential for the progress of cooperative work areas. This paper gives an extensive examination of how information designing, distributed storage, and business insight synergistically engage groups. We look at the basic standards of information designing, zeroing in on the plan, development, and the management of adaptable information pipelines. The job of distributed storage is investigated, featuring its ability to give adaptable, secure, and open information arrangements. Besides, we dive into business knowledge instruments and their capacity to change crude information into significant experiences. Through contextual analyses and exact information, we delineate the groundbreaking effect of these advances in group efficiency, coordinated effort, and dynamic cycles. This examination highlights the significance of incorporating hearty information designing works on, utilizing distributed storage arrangements, and utilizing complex business knowledge apparatuses to establish information engaged cooperative conditions. View details
    Preview abstract While most transliteration research is focused on single tokens such as named entities -- e.g., transliteration of "અમદાવાદ" from the Gujarati script to the Latin script "Ahmedabad" -- the informal romanization prevalent in South Asia and elsewhere often requires transliteration of full sentences. The lack of large parallel text collections of full sentence (as opposed to single word) transliterations necessitates incorporation of contextual information into transliteration via non-parallel resources, such as via mono-script text collections. In this paper, we present a number of methods for improving transliteration in context for such a use scenario. Some of these methods in fact improve performance without making use of sentential context, allowing for better quantification of the degree to which contextual information in particular is responsible for system improvements. Our final systems, which ultimately rely upon ensembles including large pretrained language models finetuned on simulated parallel data, yield substantial improvements over the best previously reported results for full sentence transliteration from Latin to native script on all 12 languages in the Dakshina dataset (Roark et al. 2020), with an overall 4.8% absolute (27.1% relative) mean word-error rate reduction. View details
    Shadow Hamiltonian Simulation
    Rolando Somma
    Robbie King
    Thomas O'Brien
    arXiv:2407.21775 (2024)
    Preview abstract We present shadow Hamiltonian simulation, a framework for simulating quantum dynamics using a compressed quantum state that we call the “shadow state”. The amplitudes of this shadow state are proportional to the expectations of a set of operators of interest. The shadow state evolves according to its own Schrodinger equation, and under broad conditions can be simulated on a quantum computer. We analyze a number of applications of this framework to quantum simulation problems. This includes simulating the dynamics of exponentially large systems of free fermions, or exponentially large systems of free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. Shadow Hamiltonian simulation can be extended to simulate expectations of more complex operators such as two-time correlators or Green’s functions, and to study the evolution of operators themselves in the Heisenberg picture View details
    Preview abstract Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components—GPPEs—from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended. View details
    A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models
    Shengyao Zhuang
    Bevan Koopman
    Guido Zuccon
    Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
    Preview abstract We propose a novel zero-shot document ranking approach based on Large Language Models (LLMs): the Setwise prompting approach. Our approach complements existing prompting approaches for LLM-based zero-shot ranking: Pointwise, Pairwise, and Listwise. Through the first-of-its-kind comparative evaluation within a consistent experimental framework and considering factors like model size, token consumption, latency, among others, we show that existing approaches are inherently characterised by trade-offs between effectiveness and efficiency. We find that while Pointwise approaches score high on efficiency, they suffer from poor effectiveness. Conversely, Pairwise approaches demonstrate superior effectiveness but incur high computational overhead. Our Setwise approach, instead, reduces the number of LLM inferences and the amount of prompt token consumption during the ranking procedure, compared to previous methods. This significantly improves the efficiency of LLM-based zero-shot ranking, while also retaining high zero-shot ranking effectiveness. We make our code and results publicly available at https://github.com/ielab/llm-rankers. View details
    Preview abstract Recent studies have highlighted the issue of varying degrees of stereotypical depictions for different identity group. However, these existing approaches have several key limitations, including a noticeable lack of coverage of identity groups in their evaluation, and the range of their associated stereotypes. Additionally, these studies often lack a critical distinction between inherently visual stereotypes, such as `brown' or `sombrero', and culturally influenced stereotypes like `kind' or `intelligent'. In this work, we address these limitations by grounding our evaluation of regional, geo-cultural stereotypes in the generated images from Text-to-Image models by leveraging existing textual resources. We employ existing stereotype benchmarks to evaluate stereotypes and focus exclusively on the identification of visual stereotypes within the generated images spanning 135 identity groups. We also compute the offensiveness across identity groups, and check the feasibility of identifying stereotypes automatically. Further, through a detailed case study and quantitative analysis, we reveal how the default representations of all identity groups have a more stereotypical appearance, and for historically marginalized groups, how the images across different attributes are visually more similar than other groups, even when explicitly prompted otherwise. View details
    Preview abstract To tackle the challenge of optimizing middle-mile logistics, the crucial link between warehouses and final deliveries, we introduce a novel instance generator that aims to create a rich and adaptable dataset of diverse instances to empower researchers and developers. The instance defines a logistics network with hubs, vehicles, routes, lines, and rotations. Additionally, it specifies a list of shipments that need to be transported through this network. To customize the instance, the user can adjust various parameters, such as the number of hubs, density of the space graphs, distribution of shipment weights, or the maximum number of vehicles. The generator reflects real-world complexities through variations in network size and structure. We developed a random graph generator to mimic real-world middle mile networks, by generating space graphs for hubs. Subsequently, lines and routes are randomly constructed on the generated space graphs, while adhering to user-defined constraints. The tool is in the form of an optimized C++ library that enables the generation of instances with a large number of hubs and shipments. It offers the immense potential for advancing middle-mile logistics optimization by providing a comprehensive and adaptable dataset for benchmarking optimization approaches, training machine learning models, and analyzing the impact of network configurations and shipments characteristics on overall efficiency. View details
    Preview abstract Recent developments in large language models (LLMs) have shown promise in their ability to generate synthetic query-document pairs by prompting LLMs with as few as 8 demonstrations \cite{dai2022promptagator}. This has enabled building better IR models especially for tasks which have no training data readily available. Typically, such synthetic query generation (QGen) approaches condition on an input context (e.g. document) and generate a query that is relevant to that context or condition the QGen model additionally on the relevance label (e.g. relevant vs irrelevant) to generate queries across relevance buckets. However, we find that such QGen approaches are sub-optimal as it requires the model to reason about the desired label and the input from only a handful of examples, which is not trivial, especially when the relevance buckets are nuanced. In this work, we propose to reduce this burden of LLMs by generating queries simultaneously for different labels (e.g. relevance buckets). We hypothesize that instead of asking the model to generate, say, an irrelevant query given an input context, asking the model to generate an irrelevant query with respect to a relevant query is a much simpler task setup for the model to reason about. Extensive experimentation across seven IR datasets shows that synthetic queries generated in such a fashion translates to a better downstream performance, suggesting that the generated queries are indeed of higher quality. View details
    Preview abstract We propose OmniNOCS, a large-scale monocular dataset with 3D Normalized Object Coordinate Space (NOCS) maps, object masks, and 3D bounding box annotations for indoor and outdoor scenes. OmniNOCS has 20 times more object classes and 200 times more instances than existing NOCS datasets (NOCS-Real275, Wild6D). We use OmniNOCS to train a novel, transformer-based monocular NOCS prediction model (NOCSformer) that can predict accurate NOCS, instance masks and poses from 2D object detections across diverse classes. It is the first NOCS model that can generalize to a broad range of classes when prompted with 2D boxes. We evaluate our model on the task of 3D oriented bounding box prediction, where it achieves comparable results to state-of-the-art 3D detection methods such as Cube R-CNN. Unlike other 3D detection methods, our model also provides detailed and accurate 3D object shape and segmentation. We propose a novel benchmark for the task of NOCS prediction based on OmniNOCS, which we hope will serve as a useful baseline for future work in this area. Our dataset and code is available at the project website: https://omninocs.github.io View details
    Drug Design on Quantum Computers
    Raffaele Santagati
    Alán Aspuru-Guzik
    Matthias Degroote
    Leticia Gonzalez
    Elica Kyoseva
    Nikolaj Moll
    Markus Oppel
    Robert Parrish
    Michael Streif
    Christofer Tautermann
    Horst Weiss
    Nathan Wiebe
    Clemens Utschig-Utschig
    Nature Physics (2024)
    Preview abstract The promised industrial applications of quantum computers often rest on their anticipated ability to perform accurate, efficient quantum chemical calculations. Computational drug discovery relies on accurate predictions of how candidate drugs interact with their targets in a cellular environment involving several thousands of atoms at finite temperatures. Although quantum computers are still far from being used as daily tools in the pharmaceutical industry, here we explore the challenges and opportunities of applying quantum computers to drug design. We discuss where these could transform industrial research and identify the substantial further developments needed to reach this goal. View details
    PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks
    Marina Neseem
    Conor McCullough
    Randy Hsin
    Chas Leichner
    Shan Li
    In Suk Chong
    Andrew Howard
    Lukasz Lew
    Sherief Reda
    Ville-Mikko Rautio
    Daniele Moro
    Conference on Computer Vision and Pattern Recognition (2024) (to appear)
    Preview abstract Low-precision quantization is recognized for its efficacy in neural network optimization. Our analysis reveals that non-quantized elementwise operations which are prevalent in layers such as parameterized activation functions, batch normalization, and quantization scaling dominate the inference cost of low-precision models. These non-quantized elementwise operations are commonly overlooked in SOTA efficiency metrics such as Arithmetic Computation Effort (ACE). In this paper, we propose ACEv2 - an extended version of ACE which offers a better alignment with the inference cost of quantized models and their energy consumption on ML hardware. Moreover, we introduce PikeLPN, a model that addresses these efficiency issues by applying quantization to both elementwise operations and multiply-accumulate operations. In particular, we present a novel quantization technique for batch normalization layers named QuantNorm which allows for quantizing the batch normalization parameters without compromising the model performance. Additionally, we propose applying Double Quantization where the quantization scaling parameters are quantized. Furthermore, we recognize and resolve the issue of distribution mismatch in Separable Convolution layers by introducing Distribution-Heterogeneous Quantization which enables quantizing them to low-precision. PikeLPN achieves Pareto-optimality in efficiency-accuracy trade-off with up to 3X efficiency improvement compared to SOTA low-precision models. View details