Jump to Content
Steve Yadlowsky

Steve Yadlowsky

My goal is to understand what machine learning predictions have to offer for causal decision making about interventions. This includes using machine learning for causal inference research (for example, nuisance parameter estimation in semiparametric models), understanding how confounding affects the usefulness of machine learning predictions, and identifying cases where prediction or classification models are good surrogates for intervention effectiveness.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract Experiments with pretrained models such as BERT are often based on a single checkpoint. While the conclusions drawn apply to the artifact (i.e., the particular instance of the model), it is not always clear whether they hold for the more general procedure (which includes the model architecture, training data, initialization scheme, and loss function). Recent work has shown that re-running pretraining can lead to substantially different conclusions about performance, suggesting that alternative evaluations are needed to make principled statements about procedures. To address this question, we introduce MultiBERTs: a set of 25 BERT-base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random initialization and data shuffling. The aim is to enable researchers to draw robust and statistically justified conclusions about pretraining procedures. The full release includes 25 fully trained checkpoints, as well as statistical guidelines and a code library implementing our recommended hypothesis testing methods. Finally, for five of these models we release a set of 28 intermediate checkpoints in order to support research on learning dynamics. View details
    Preview abstract Logistic regression remains one of the most widely used tools in applied statistics, machine learning and data science. Practical datasets often have a substantial number of features $d$ relative to the sample size $n$. In these cases, the logistic regression maximum likelihood estimator (MLE) is biased, and its standard large-sample approximation is poor. In this paper, we develop an improved method for debiasing predictions and estimating frequentist uncertainty for such datasets. We build on recent work characterizing the asymptotic statistical behavior of the MLE in the regime where the aspect ratio $d / n$, instead of the number of features $d$, remains fixed as $n$ grows. In principle, this approximation facilitates bias and uncertainty corrections, but in practice, these corrections require an estimate of the signal strength of the predictors. Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude. The bias correction that this facilitates also reduces the variance of the predictions, yielding narrower confidence intervals with higher (valid) coverage of the true underlying probabilities and parameters. View details
    Deep Cox Mixtures for Survival Regression
    Proceedings of the 6th Machine Learning for Healthcare Conference, PMLR (2021), pp. 674-708
    Preview abstract Survival analysis is a challenging variation of regression modeling because of the presence of censoring, where the outcome measurement is only partially known, due to, for example, loss to follow up. Such problems come up frequently in medical applications, making survival analysis a key endeavor in biostatistics and machine learning for healthcare, with Cox regression models being amongst the most commonly employed models. We describe a new approach for survival analysis regression models, based on learning mixtures of Cox regressions to model individual survival distributions. We propose an approximation to the Expectation Maximization algorithm for this model that does hard assignments to mixture groups to make optimization efficient. In each group assignment, we fit the hazard ratios within each group using deep neural networks, and the baseline hazard for each mixture component non-parametrically. We perform experiments on multiple real world datasets, and look at the mortality rates of patients across ethnicity and gender. We emphasize the importance of calibration in healthcare settings and demonstrate that our approach outperforms classical and modern survival analysis baselines, both in terms of discriminative performance and calibration, with large gains in performance on the minority demographics. View details
    Preview abstract ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain. Underspecification is common in modern ML pipelines, such as those based on deep learning. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We show that this problem appears in a wide variety of practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain. View details
    No Results Found