Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10105 publications
See Through Vehicles: Fully Occluded Vehicle Detection with Millimeter Wave Radar
Chenming He
Chengzhen Meng
Chunwang He
Beibei Wang
Yubo Yan
Yanyong Zhang
MobiCom 2024: The 30th Annual International Conference On Mobile Computing And Networking
Preview abstract
A crucial task in autonomous driving is to continuously detect nearby vehicles. Problems thus arise when a vehicle is occluded and becomes “unseeable”, which may lead to accidents. In this study, we develop mmOVD, a system that can detect fully occluded vehicles by involving millimeter-wave radars to capture the ground-reflected signals passing beneath the blocking vehicle’s chassis. The foremost challenge here is coping with ghost points caused by frequent multi-path reflections, which highly resemble the true points. We devise a set of features that can efficiently distinguish the ghost points by exploiting the neighbor points’ spatial and velocity distributions. We also design a cumulative clustering algorithm to effectively aggregate the unstable ground reflected radar points over consecutive frames to derive the bounding boxes of the vehicles.
We have evaluated mmOVD in both controlled environments and real-world environments. In an underground garage and two campus roads, we conducted controlled experiments in 56 scenes with 8 vehicles, including a minibus and a motorcycle. Our system accurately detects occluded vehicles for the first time, with a 91.1% F1 score for occluded vehicle detection and a 100% success rate for occlusion event detection. More importantly, we drove 324km on crowded roads at a speed up to 70km per hour and show we could achieve an occlusion detection success rate of 92% and a low false alarm rate of 4% with only 10% of the training data in complex real-world environments.
View details
Artificial intelligence as a second reader for screening mammography
Etsuji Nakai
Alessandro Scoccia Pappagallo
Hiroki Kayama
Lin Yang
Shawn Xu
Timo Kohlberger
Daniel Golden
Akib Uddin
Radiology Advances, 1(2) (2024)
Preview abstract
Background
Artificial intelligence (AI) has shown promise in mammography interpretation, and its use as a second reader in breast cancer screening may reduce the burden on health care systems.
Purpose
To evaluate the performance differences between routine double read and an AI as a second reader workflow (AISR), where the second reader is replaced with AI.
Materials and Methods
A cohort of patients undergoing routine breast cancer screening at a single center with mammography was retrospectively collected between 2005 and 2021. A model developed on US and UK data was fine-tuned on Japanese data. We subsequently performed a reader study with 10 qualified readers with varied experience (5 reader pairs), comparing routine double read to an AISR workflow.
Results
A “test set” of 4,059 women (mean age, 56 ± 14 years; 157 positive, 3,902 negative) was collected, with 278 (mean age 55 ± 13 years; 90 positive, 188 negative) evaluated for the reader study. We demonstrate an area under the curve =.84 (95% confidence interval [CI], 0.805-0.881) on the test set, with no significant difference to decisions made in clinical practice (P = .32). Compared with routine double reading, in the AISR arm, sensitivity improved by 7.6% (95% CI, 3.80-11.4; P = .00004) and specificity decreased 3.4% (1.42-5.43; P = .0016), with 71% (212/298) of scans no longer requiring input from a second reader. Variation in recall decision between reader pairs improved from a Cohen kappa of κ = .65 (96% CI, 0.61-0.68) to κ = .74 (96% CI, 0.71-0.77) in the AISR arm.
View details
Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians
Mark Chia
Fred Hersch
Pearse Keane
Angus Turner
British Journal of Ophthalmology, 108 (2024), pp. 268-273
Preview abstract
Background/aims: Deep learning systems (DLSs) for diabetic retinopathy (DR) detection show promising results but can underperform in racial and ethnic minority groups, therefore external validation within these populations is critical for health equity. This study evaluates the performance of a DLS for DR detection among Indigenous Australians, an understudied ethnic group who suffer disproportionately from DR-related blindness.
Methods: We performed a retrospective external validation study comparing the performance of a DLS against a retinal specialist for the detection of more-than-mild DR (mtmDR), vision-threatening DR (vtDR) and all-cause referable DR. The validation set consisted of 1682 consecutive, single-field, macula-centred retinal photographs from 864 patients with diabetes (mean age 54.9 years, 52.4% women) at an Indigenous primary care service in Perth, Australia. Three-person adjudication by a panel of specialists served as the reference standard.
Results: For mtmDR detection, sensitivity of the DLS was superior to the retina specialist (98.0% (95% CI, 96.5 to 99.4) vs 87.1% (95% CI, 83.6 to 90.6), McNemar’s test p<0.001) with a small reduction in specificity (95.1% (95% CI, 93.6 to 96.4) vs 97.0% (95% CI, 95.9 to 98.0), p=0.006). For vtDR, the DLS’s sensitivity was again superior to the human grader (96.2% (95% CI, 93.4 to 98.6) vs 84.4% (95% CI, 79.7 to 89.2), p<0.001) with a slight drop in specificity (95.8% (95% CI, 94.6 to 96.9) vs 97.8% (95% CI, 96.9 to 98.6), p=0.002). For all-cause referable DR, there was a substantial increase in sensitivity (93.7% (95% CI, 91.8 to 95.5) vs 74.4% (95% CI, 71.1 to 77.5), p<0.001) and a smaller reduction in specificity (91.7% (95% CI, 90.0 to 93.3) vs 96.3% (95% CI, 95.2 to 97.4), p<0.001).
Conclusion: The DLS showed improved sensitivity and similar specificity compared with a retina specialist for DR detection. This demonstrates its potential to support DR screening among Indigenous Australians, an underserved population with a high burden of diabetic eye disease.
View details
Towards Conversational Diagnostic AI
Anil Palepu
Khaled Saab
Jan Freyberg
Ryutaro Tanno
Amy Wang
Brenna Li
Nenad Tomašev
Karan Singhal
Le Hou
Albert Webson
Kavita Kulkarni
Sara Mahdavi
Juro Gottweis
Joelle Barral
Kat Chou
Arxiv (2024) (to appear)
Preview abstract
At the heart of medicine lies the physician-patient dialogue, where skillful history-taking paves the way for accurate diagnosis, effective management, and enduring trust. Artificial Intelligence (AI) systems capable of diagnostic dialogue could increase accessibility, consistency, and quality of care. However, approximating clinicians' expertise is an outstanding grand challenge. Here, we introduce AMIE (Articulate Medical Intelligence Explorer), a Large Language Model (LLM) based AI system optimized for diagnostic dialogue.
AMIE uses a novel self-play based simulated environment with automated feedback mechanisms for scaling learning across diverse disease conditions, specialties, and contexts. We designed a framework for evaluating clinically-meaningful axes of performance including history-taking, diagnostic accuracy, management reasoning, communication skills, and empathy. We compared AMIE's performance to that of primary care physicians (PCPs) in a randomized, double-blind crossover study of text-based consultations with validated patient actors in the style of an Objective Structured Clinical Examination (OSCE). The study included 149 case scenarios from clinical providers in Canada, the UK, and India, 20 PCPs for comparison with AMIE, and evaluations by specialist physicians and patient actors. AMIE demonstrated greater diagnostic accuracy and superior performance on 28 of 32 axes according to specialist physicians and 24 of 26 axes according to patient actors. Our research has several limitations and should be interpreted with appropriate caution. Clinicians were limited to unfamiliar synchronous text-chat which permits large-scale LLM-patient interactions but is not representative of usual clinical practice. While further research is required before AMIE could be translated to real-world settings, the results represent a milestone towards conversational diagnostic AI.
View details
Locality-Aware Graph Rewiring in GNNs
Federico Barbero
Ameya Velingker
Amin Saberi
Michael Bronstein
Francesco Di Giovanni
ICLR 2024
Preview abstract
Graph Neural Networks (GNNs) are popular models for machine learning on graphs that typically follow the message-passing paradigm, whereby the feature of a node is updated recursively upon aggregating information over its neighbors. While exchanging messages over the input graph endows GNNs with a strong inductive bias, it can also make GNNs susceptible to \emph{over-squashing}, thereby preventing them from capturing long-range interactions in the given graph. To rectify this issue, {\em graph rewiring} techniques have been proposed as a means of improving information flow by altering the graph connectivity. In this work, we identify three desiderata for graph-rewiring: (i) reduce over-squashing, (ii) respect the locality of the graph, and (iii) preserve the sparsity of the graph. We highlight fundamental trade-offs that occur between {\em spatial} and {\em spectral} rewiring techniques; while the former often satisfy (i) and (ii) but not (iii), the latter generally satisfy (i) and (iii) at the expense of (ii). We propose a novel rewiring framework that satisfies all of (i)--(iii) through a locality-aware sequence of rewiring operations. We then discuss a specific instance of such rewiring framework and validate its effectiveness on several real-world benchmarks, showing that it either matches or significantly outperforms existing rewiring approaches.
View details
Fixing Insecure Cellular System Information Broadcasts For Good
Alex Ross
Bradley Reaves
Yomna Nasser
Gil Cukierman
Proceedings of the 27th International Symposium on Research in Attacks, Intrusions and Defenses, Association for Computing Machinery (2024), 693–708
Preview abstract
Cellular networks are essential everywhere, and securing them is increasingly important as attacks against them become more prevalent and powerful. All cellular network generations bootstrap new radio connections with unauthenticated System Information Blocks (SIBs), which provide critical parameters needed to identify and connect to the network. Many cellular network attacks require exploiting SIBs. Authenticating these messages would eliminate
whole classes of attack, from spoofed emergency alerts to fake base stations.
This paper presents Broadcast But Verify, an efficient backwardscompatible mechanism for SIB authentication. Broadcast But Verify specifies a new signing SIB that encodes authentication signatures and hashes for all other SIBs while building on a standard cellular PKI. We identify the security and functional requirements for such a system, define a scalable and flexible mechanism to meet those requirements, and demonstrate negligible common-case connection latency overhead of 3.220ms in a 4G LTE testbed. We also demonstrate that unmodified mobile devices successfully connect to networks deploying Broadcast But Verify. In contrast to prior proposals, Broadcast But Verify authenticates every SIB broadcasted by a cell. By demonstrating that even 4G LTE has the capacity to authenticate SIBs, we argue that future network generations can and should mandate authenticated SIBs.
View details
KATch: A Fast Symbolic Verifier for NetKAT
Mark Moeller
Jules Jacobs
Olivier Savary Belanger
David Darais
Cole Schlesinger
Nate Foster
Alexandra Silva
Programming Languages and Implementation (PLDI) (2024) (to appear)
Preview abstract
We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches.
View details
Preview abstract
One of the most basic problems for studying the "price of privacy over time" is the so called private counter problem, introduced by Dwork et al. (2010) and Chan et al. (2011). In this problem, we aim to track the number of events that occur over time, while hiding the existence of every single event. More specifically, in every time step $t\in[T]$ we learn (in an online fashion) that $\Delta_t\geq 0$ new events have occurred, and must respond with an estimate $n_t\approx\sum_{j=1}^t \Delta_j$. The privacy requirement is that all of the outputs together, across all time steps, satisfy event level differential privacy.
The main question here is how our error needs to depend on the total number of time steps $T$ and the total number of events $n$. Dwork et al. (2015) showed an upper bound of $O\left(\log(T)+\log^2(n)\right)$, and Henzinger et al. (2023) showed a lower bound of $\Omega\left(\min\{\log n, \log T\}\right)$. We show a new lower bound of $\Omega\left(\min\{n,\log T\}\right)$, which is tight w.r.t. the dependence on $T$, and is tight in the sparse case where $\log^2 n=O(\log T)$. Our lower bound has the following implications:
* We show that our lower bound extends to the online thresholds problem, where the goal is to privately answer many "quantile queries" when these queries are presented one-by-one. This resolves an open question of Bun et al. (2017).
* Our lower bound implies, for the first time, a separation between the number of mistakes obtainable by a private online learner and a non-private online learner. This partially resolves a COLT'22 open question published by Sanyal and Ramponi.
* Our lower bound also yields the first separation between the standard model of private online learning and a recently proposed relaxed variant of it, called private online prediction.
View details
Open Se Cura: First Silicon Results of an Auditable and Transparent Hardware Root of Trust System using Open EDA in 16-nm
Guanchen Tao
Ming-Hung Chen
Bangfei Pan
Kai Yick
Dennis Sylvester
Mehdi Saligane
IEEE Solid-State Circuits Magazine, 16(2024), pp. 58-66
Preview abstract
Hardware Root of Trust (HRoT) is essential for Internet-of-Things (IoT) devices as it provides critical user data protection. However, each novel use case significantly lengthens the development time for an HRoT system. Furthermore, most HRoT solutions are proprietary, and users lack permission to inspect and audit such systems [1-2]. This paper introduces Open Se Cura, which is an open-source framework designed to expedite the implementation of secure and transparent HRoT systems. It utilizes open-source Electronic Design Automation (EDA) tools like OpenROAD [3-4] and OpenFASOC [5-6], along with open-source Process Design Kits (PDKs), to present a transparent and auditable approach to hardware-software co-design platforms. This approach enables fast and trustworthy HRoT system implementation and is made openly available to reproduce its results and security efficacy [7]. Our reference design is showcased through FPGA emulation, and the first measurement results of a silicon implementation in 16nm of Open Se Cura security domain subsets integrated using open-source EDA are presented.
View details
Understanding Use Cases for AI-Powered Visual Interpretation Services
Ricardo Gonzalez
Jazmin Collins
Shiri Azenkot
CHI Conference on Human-Computer Interaction (2024)
Preview abstract
"Scene description" applications that describe visual content in a photo are useful daily tools for blind and low vision (BLV) people. Researchers have
studied their use, but they have only explored those that leverage remote sighted assistants; little is known about applications that use AI to generate
their descriptions. Thus, to investigate their use cases, we conducted a two-week diary study where 16 BLV participants used an AI-powered scene description
application we designed. Through their diary entries and follow-up interviews, users shared their information goals and assessments of the visual descriptions
they received. We analyzed the entries and found frequent use cases, such as identifying visual features of known objects, and surprising ones, such as avoiding contact with dangerous objects. We also found users scored the descriptions relatively low on average,
2.76 out of 5 (SD=1.49) for satisfaction and 2.43 out of 4 (SD=1.16) for trust, showing that descriptions still need signifcant improvements to deliver
satisfying and trustworthy experiences. We discuss future opportunities for AI as it becomes a more powerful accessibility tool for BLV users.
View details
Now You See Me, Now You Don't: 'Poverty of the Stimulus' Problems and Arbitrary Correspondences in End-to-End Speech Models
Proceedings of the Second Workshop on Computation and Written Language (CAWL) 2024
Preview abstract
End-to-end models for speech recognition and speech synthesis have many benefits, but we argue they also face a unique set of challenges not encountered in conventional multi-stage hybrid systems, which relied on the explicit injection of linguistic knowledge through resources such as phonemic dictionaries and verbalization grammars. These challenges include handling words with unusual grapheme-to-phoneme correspondences, converting between written forms like ‘12’ and spoken forms such as ‘twelve’, and contextual disambiguation of homophones or homographs. We describe the mitigation strategies that have been used for these problems in end-to-end systems, either implicitly or explicitly, and call out that the most commonly used mitigation techniques are likely incompatible with newly emerging approaches that use minimal amounts of supervised audio training data. We review best-of-both-world approaches that allow the use of end-to-end models combined with traditional linguistic resources, which we show are increasingly straightforward to create at scale, and close with an optimistic outlook for bringing speech technologies to many more languages by combining these strands of research.
View details
Beyond dashboards: LLM-powered insights for next generation of business intelligence
AIM Research (2024)
Preview abstract
The articles delves into the promise of AI in business intelligence. It briefly reviews the evolution of BI and various Cloud tools, followed by the paradigm shift in how data is consumed. While AI brings huge potential, the article covers areas that enterprises must exercise caution over, when building intelligent agents to answer data questions.
View details
MarkovGen: Structured Prediction for Efficient Text-to-Image Generation
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Preview abstract
Modern text-to-image generation models produce high-quality images that are both photorealistic and faithful to the text prompts. However, this quality comes at significant computational cost: nearly all of these models are iterative and require running sampling multiple times with large models. This iterative process is needed to ensure that different regions of the image are not only aligned with the text prompt, but also compatible with each other. In this work, we propose a light-weight approach to achieving this compatibility between different regions of an image, using a Markov Random Field (MRF) model. We demonstrate the effectiveness of this method on top of the latent token-based Muse text-to-image model. The MRF richly encodes the compatibility among image tokens at different spatial locations to improve quality and significantly reduce the required number of Muse sampling steps. Inference with the MRF is significantly cheaper, and its parameters can be quickly learned through back-propagation by modeling MRF inference as a differentiable neural-network layer. Our full model, MarkovGen, uses this proposed MRF model to both speed up Muse by 1.5X and produce higher quality images by decreasing undesirable image artifacts.
View details
Generalizing Tree-Level Sap Flow Across the European Continent
Ralf Loritz
Chen Huan Wu
Daniel Klotz
Martin Gauch
Frederik Kratzert
Maoya Bassiouni
Geophysical Research Letters (2024)
Preview abstract
Sap flow offers key insights about transpiration dynamics and forest-climate interactions. Accurately simulating sap flow remains challenging due to measurement uncertainties and interactions between global and local environmental controls. Addressing these complexities, this study leveraged Long Short-Term Memory networks (LSTMs) with SAPFLUXNET to predict hourly tree-level sap flow across Europe. We built models with diverse training sets to assess performance under previously unseen conditions. The average Kling-Gupta Efficiency was 0.77 for models trained on 50% of time series across all forest stands, and 0.52 for models trained on 50% of the forest stands. Continental models not only matched but surpassed the performance of specialized and baselines for all genera and forest types, showcasing the capacity of LSTMs to effectively generalize across tree genera, climates, and forest ecosystems given minimal inputs. This study underscores the potential of LSTMs in generalizing state-dependent ecohydrological processes and bridging tree level measurements to continental scales.
View details
ASPEST: Bridging the Gap Between Active Learning and Selective Prediction
Somesh Jha
Transactions on Machine Learning Research (TMLR) (2024)
Preview abstract
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain. These predictions can then be deferred to humans for further evaluation. As an everlasting challenge for machine learning, in many real-world scenarios, the distribution of test data is different from the training data. This results in more inaccurate predictions, and often increased dependence on humans, which can be difficult and expensive. Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples. Selective prediction and active learning have been approached from different angles, with the connection between them missing. In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain while increasing accuracy and coverage. For this new paradigm, we propose a simple yet effective approach, ASPEST, that utilizes ensembles of model snapshots with self-training with their aggregated outputs as pseudo labels. Extensive experiments on numerous image, text and structured datasets, which suffer from domain shifts, demonstrate that ASPEST can significantly outperform prior work on selective prediction and active learning (e.g. on the MNIST→SVHN benchmark with the labeling budget of 100, ASPEST improves the AUACC metric from 79.36% to 88.84%) and achieves more optimal utilization of humans in the loop.
View details