Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10132 publications
    Seeking in Cycles: How Users Leverage Personal Information Ecosystems to Find Mental Health Information
    Ashlee Milton
    Fernando Maestre
    Rebecca Umbach
    Stevie Chancellor
    Proceedings of the CHI Conference on Human Factors in Computing Systems (2024)
    Preview abstract Information is crucial to how people understand their mental health and well-being, and many turn to online sources found through search engines and social media. We present the findings from an interview study (n = 17) of participants who use online platforms to seek information about their mental illnesses. We found that participants leveraged multiple platforms in a cyclical process for finding information from their personal information ecosystems, driven by the adoption of new information and uncertainty surrounding the credibility of information. Concerns about privacy, fueled by perceptions of stigma and platform design, also influenced their information-seeking decisions. Our work proposes theoretical implications for social computing and information retrieval on information seeking in users' personal information ecosystems. We also offer design implications to support users in navigating their personal information ecosystems to find mental health information. View details
    CodeQueries: A Dataset of Semantic Queries over Code
    Surya Prakash Sahu
    Madhurima Mandal
    Shikhar Bharadwaj
    Aditya Kanade
    Shirish Shevade
    Innovations in Software Engineering (ISEC), ACM, Bangalore, India (2024)
    Preview abstract Developers often have questions about semantic aspects of code they are working on, e.g., “Is there a class whose parent classes declare a conflicting attribute?”. Answering them requires understanding code semantics such as attributes and inheritance relation of classes. An answer to such a question should identify code spans constituting the answer (e.g., the declaration of the subclass) as well as supporting facts (e.g., the definitions of the conflicting attributes). The existing work on question-answering over code has considered yes/no questions or method-level context. We contribute a labeled dataset, called CodeQueries, of semantic queries over Python code. Compared to the existing datasets, in CodeQueries, the queries are about code semantics, the context is file level and the answers are code spans. We curate the dataset based on queries supported by a widely-used static analysis tool, CodeQL, and include both positive and negative examples, and queries requiring single-hop and multi-hop reasoning. To assess the value of our dataset, we evaluate baseline neural approaches. We study a large language model (GPT3.5-Turbo) in zero-shot and few-shot settings on a subset of CodeQueries. We also evaluate a BERT style model (CuBERT) with fine-tuning. We find that these models achieve limited success on CodeQueries. CodeQueries is thus a challenging dataset to test the ability of neural models, to understand code semantics, in the extractive question-answering setting View details
    Preview abstract With growing machine learning (ML) and large language model applications in healthcare, there have been calls for fairness in ML to understand and mitigate ethical concerns these systems may pose. Fairness has implications for health in Africa, which already has inequitable power imbalances between the Global North and South. This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose fairness attributes for consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 625 general population study participants in 5 countries in Africa and 28 experts in ML, Health, and/or policy focussed on Africa to obtain feedback on the proposed attributes. We delve specifically into understanding the interplay between AI, health and colonialism. Our findings demonstrate that among experts there is a general mistrust that technologies that are solely developed by former colonizers can benefit Africans, and that associated resource constraints due to pre-existing economic and infrastructure inequities can be linked to colonialism. General population survey responses found about an average of 40% of people associate an undercurrent of colonialism to AI and this was most dominant amongst participants from South Africa. However the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism.Colonial history, country of origin, National income level were specific axes of disparities that participants felt would cause an AI tool to be biased This work serves as a basis for policy development around Artificial Intelligence for health in Africa and can be expanded to other regions. View details
    Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program
    Neil S. Zheng
    Jeffrey Annis
    Hiral Master
    Lide Han
    Karla Gleichauf
    Melody Nasser
    Peyton Coleman
    Stacy Desine
    Douglas M. Ruderfer
    John Hernandez
    Logan D. Schneider
    Evan L. Brittain
    Nature Medicine (2024)
    Preview abstract Poor sleep health is associated with increased all-cause mortality and incidence of many chronic conditions. Previous studies have relied on cross-sectional and self-reported survey data or polysomnograms, which have limitations with respect to data granularity, sample size and longitudinal information. Here, using objectively measured, longitudinal sleep data from commercial wearable devices linked to electronic health record data from the All of Us Research Program, we show that sleep patterns, including sleep stages, duration and regularity, are associated with chronic disease incidence. Of the 6,785 participants included in this study, 71% were female, 84% self-identified as white and 71% had a college degree; the median age was 50.2 years (interquartile range = 35.7, 61.5) and the median sleep monitoring period was 4.5 years (2.5, 6.5). We found that rapid eye movement sleep and deep sleep were inversely associated with the odds of incident atrial fibrillation and that increased sleep irregularity was associated with increased odds of incident obesity, hyperlipidemia, hypertension, major depressive disorder and generalized anxiety disorder. Moreover, J-shaped associations were observed between average daily sleep duration and hypertension, major depressive disorder and generalized anxiety disorder. These findings show that sleep stages, duration and regularity are all important factors associated with chronic disease development and may inform evidence-based recommendations on healthy sleeping habits. View details
    Take it, Leave it, or Fix it: Measuring Productivity and Trust in Human-AI Collaboration
    29th International Conference on Intelligent User Interfaces (IUI ’24), ACM, New York, NY, USA (2024)
    Preview abstract Although recent developments in generative AI have greatly enhanced the capabilities of conversational agents such as Google's Bard or OpenAI's ChatGPT, it's unclear whether the usage of these agents aids users across various contexts. To better understand how access to conversational AI affects productivity and trust, we conducted a mixed-methods, task-based user study, observing 76 software engineers (N=76) as they completed a programming exam with and without access to Bard. Effects on performance, efficiency, satisfaction, and trust vary depending on user expertise, question type (open-ended "solve" questions vs. definitive "search" questions), and measurement type (demonstrated vs. self-reported). Our findings include evidence of automation complacency, increased reliance on the AI over the course of the task, and increased performance for novices on “solve”-type questions when using the AI. We discuss common behaviors, design recommendations, and impact considerations to improve collaborations with conversational AI. View details
    VideoPoet: A Large Language Model for Zero-Shot Video Generation
    Dan Kondratyuk
    Xiuye Gu
    Jonathan Huang
    Grant Schindler
    Rachel Hornung
    Vighnesh Birodkar
    Jimmy Yan
    Ming-Chang Chiu
    Hassan Akbari
    Josh Dillon
    Agrim Gupta
    Meera Hahn
    Anja Hauth
    David Hendon
    Alonso Martinez
    Kihyuk Sohn
    Xuan Yang
    Huisheng Wang
    Lu Jiang
    ICML (2024)
    Preview abstract We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/ View details
    Preview abstract Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these challenging ranking formulations. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL 2019&2020, PRP based on the Flan-UL2 model with 20B parameters performs favorably with the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, while outperforming other LLM-based solutions, such as InstructGPT which has 175B parameters, by over 10% for all ranking metrics. By using the same prompt template on seven BEIR tasks, PRP outperforms supervised baselines and outperforms the blackbox commercial ChatGPT solution by 4.2% and pointwise LLM-based solutions by more than 10% on average NDCG@10. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. View details
    Preview abstract This paper presents a novel approach to train a direct speech-to-speech translation model from monolingual datasets only in a fully unsupervised manner. The proposed approach combines back-translation, denoising autoencoder, and unsupervised embedding mapping techniques to achieve this goal. We demonstrate the effectiveness of the proposed approach by comparing it against a cascaded baseline using two Spanish and English datasets. The proposed approach achieved a significant improvement over the cascaded baseline on synthesized unpaired conversational and synthesized Common Voice $11$ datasets. View details
    SQL Has Problems. We Can Fix Them: Pipe Syntax In SQL
    Shannon Bales
    Matthew Brown
    Jean-Daniel Browne
    Brandon Dolphin
    Romit Kudtarkar
    Andrey Litvinov
    Jingchi Ma
    John Morcos
    Michael Shen
    David Wilhite
    Xi Wu
    Lulan Yu
    Proc. VLDB Endow. (2024), pp. 4051-4063 (to appear)
    Preview abstract SQL has been extremely successful as the de facto standard language for working with data. Virtually all mainstream database-like systems use SQL as their primary query language. But SQL is an old language with significant design problems, making it difficult to learn, difficult to use, and difficult to extend. Many have observed these challenges with SQL, and proposed solutions involving new languages. New language adoption is a significant obstacle for users, and none of the potential replacements have been successful enough to displace SQL. In GoogleSQL, we’ve taken a different approach - solving SQL’s problems by extending SQL. Inspired by a pattern that works well in other modern data languages, we added piped data flow syntax to SQL. The results are transformative - SQL becomes a flexible language that’s easier to learn, use and extend, while still leveraging the existing SQL ecosystem and existing userbase. Improving SQL from within allows incrementally adopting new features, without migrations and without learning a new language, making this a more productive approach to improve on standard SQL. View details
    Preview abstract Recent studies have highlighted the issue of varying degrees of stereotypical depictions for different identity group. However, these existing approaches have several key limitations, including a noticeable lack of coverage of identity groups in their evaluation, and the range of their associated stereotypes. Additionally, these studies often lack a critical distinction between inherently visual stereotypes, such as `brown' or `sombrero', and culturally influenced stereotypes like `kind' or `intelligent'. In this work, we address these limitations by grounding our evaluation of regional, geo-cultural stereotypes in the generated images from Text-to-Image models by leveraging existing textual resources. We employ existing stereotype benchmarks to evaluate stereotypes and focus exclusively on the identification of visual stereotypes within the generated images spanning 135 identity groups. We also compute the offensiveness across identity groups, and check the feasibility of identifying stereotypes automatically. Further, through a detailed case study and quantitative analysis, we reveal how the default representations of all identity groups have a more stereotypical appearance, and for historically marginalized groups, how the images across different attributes are visually more similar than other groups, even when explicitly prompted otherwise. View details
    Computational Methodologies for Understanding, Automating, and Evaluating User Interfaces
    Yuwen Lu
    Yue Jiang
    Christof Lutteroth
    Toby Jia-Jun Li
    Jeffery Nichols
    Wolfgang Stuerzlinger
    Preview abstract Building on the success of the first two workshops on user interfaces (UIs) at CHI 2022 and CHI 2023, this workshop aims to advance the research field by further exploring current research trends, such as applying large language models and visual language models. Previous work has explored computational approaches to understanding and adapting UIs using constraint-based optimization models and machine learning-based data-driven approaches. In addition to further delving into these established UI research areas, we aim to trigger the exploration into the application of the latest advancements in general-purpose large language and vision-language models within the UI domain. We will encourage participants to explore novel methods for understanding, automating, and evaluating UIs. The proposed workshop seeks to bring together academic researchers and industry practitioners interested in computational approaches for UIs to discuss the needs and opportunities for future user interface algorithms, models, and applications. View details
    Preview abstract Misgendering refers to the act of incorrectly identifying or addressing someone's gender. While misgendering is both a factual inaccuracy and a toxic act of identity erasure, research on fact-checking and toxicity detection does not address it. We are the first to bridge this gap by introducing a dataset, \dataset, to assist in developing interventions for misgendering. The misgendering interventions task can be divided into two sub-tasks: (i) detecting misgendering, followed by (ii) editing misgendering where misgendering is present, in domains where editing is appropriate. We introduce a dataset containing a total of 3806 instances of tweets, YouTube comments, and LLM-generated text about 30 non-cisgender individuals annotated for whether they contain misgendering or not. LLM-generated text is also annotated for edits required to fix misgendering. Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlight challenges for future models to address. Additionally, we conducted a survey of non-cisgender individuals in the US to understand opinions about automated interventions for text-based misgendering. We find interest for interventions along with concerns for potential harm. View details
    API Governance at Scale
    Mak Ahmad
    JJ Geewax
    David R Karger
    Kwan-Liu Ma
    ICSE 2024 Software Engineering in Practice (2024)
    Preview abstract API Governance, the process of applying standardized sets of policies and guardrails to the design and development of APIs, has only grown in importance and prominence given the continued growth in APIs being produced. In this paper, we present an Action Research style approach to investigate and understand the utility of a multi-faceted API Governance process being adopted inside Google. We first reflect on past research around API Governance, and then introduce three new components, 1. API Improvement Proposals (AIPs) the documented source of truth for API design rules, 2. API Linter, an automated analysis tool which checks for adherence to / violations of AIPs, and 3. API Readability, a program to educate and certify API design experts. These three components are designed to build upon pre-existing processes to scale and improve API design. Through a mixed-methods research strategy, containing both a survey and a series of interviews, we evaluate the utility of these approaches in supporting API Producers. Our research shows that API Producers have positive sentiment towards API Governance, validating the general direction of the program. Specifically, our study participants highlighted the positive impact of API Governance on the quality of the APIs they produced, via consistency in both the outcome and approach. This paper also discusses future research opportunities to enhance API Governance, specifically with regards to newer API Producers, who reported worse sentiment towards the program than their more experienced peers. View details
    Preview abstract As AI systems quickly improve in both breadth and depth of performance, they lend themselves to creating increasingly powerful and realistic agents, including the possibility of agents modeled on specific people. We anticipate that within our lifetimes it may become common practice for people to create a custom AI agent to interact with loved ones and/or the broader world after death. We call these generative ghosts, since such agents will be capable of generating novel content rather than merely parroting content produced by their creator while living. In this paper, we first discuss the design space of potential implementations of generative ghosts. We then discuss the practical and ethical implications of generative ghosts, including potential positive and negative impacts on individuals and society. Based on these considerations, we lay out a research agenda for the AI and HCI research communities to empower people to create and interact with AI afterlives in a safe and beneficial manner. View details
    Preview abstract We present SPHEAR, an accurate, differentiable parametric statistical 3D human head model, enabled by a novel 3D registration method based on spherical embeddings. We shift the paradigm away from the classical Non-Rigid Registration methods, which operate under various surface priors, increasing reconstruction fidelity and minimizing required human intervention. Additionally, SPHEAR is a complete model that allows not only to sample diverse synthetic head shapes and facial expressions, but also gaze directions, high-resolution color textures, surface normal maps, and hair cuts represented in detail, as strands. SPHEAR can be used for automatic realistic visual data generation, semantic annotation, and general reconstruction tasks. Compared to state-of-the-art approaches, our components are fast and memory efficient, and experiments support the validity of our design choices and the accuracy of registration, reconstruction and generation techniques. View details