Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10129 publications
    Specifying BGP using TLA+
    Aman Shaikh
    (2024)
    Preview abstract This presentation is about the TLA+ specification we have written for BGP, the routing protocol underpinning the Internet. The specification also serves as a crucial first-step towards the use of TLA+ for verification of network designs. View details
    Productive Coverage: Improving the Actionability of Code Coverage
    Gordon
    Luka Kalinovcic
    Marko Ivanković
    Mateusz Lewko
    Rene Just
    Yana Kulizhskaya
    ICSE-SEIP '24: Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice (2024) (to appear)
    Preview abstract Code coverage is an intuitive and established test adequacy measure. However, not all parts of the code base are equally important, and hence additional testing may be critical for some uncovered code, whereas it may not be worthwhile for other uncovered code. As a result, simply visualizing uncovered code is not reliably actionable. To make code coverage actionable and further improve code coverage in our codebase, we developed Productive Coverage — a novel approach to code coverage that guides developers to uncovered code that that should be tested by (unit) tests. Specifically, Productive Coverage identifies uncovered code that is similar to existing code, which in turn is tested and/or frequently executed in production. We implemented and evaluated Productive Coverage for four programming languages (C++, Java, Go, and Python). The evaluation shows: (1) The developer sentiment, measured at the point of use, is strongly positive; (2) Productive Coverage meaningfully increases code coverage above a strong baseline; (3) Productive Coverage has no negative effect on code authoring efficiency; (4) Productive Coverage modestly improves code-review effiency; (5) Productive Coverage directly improves code quality and prevents bugs from being introduced, in addition to improving test quality View details
    Preview abstract Use of Text-to-Image models is expanding beyond generating generic objects, as they are increasingly being adopted by diverse global communities to create visual representations of their unique culture. Current T2I benchmarks primarily evaluate image-text alignment, aesthetics and fidelity of generations for complex prompts with generic objects, overlooking the critical dimension of cultural understanding. In this work, we address this gap by defining a framework to evaluate cultural competence of T2I models, and present a scalable approach to collect cultural artifacts unique to a particular culture from Knowledge Graphs and Large Language Models in tandem. We assess the ability of state-of-the-art T2I models to generate culturally faithful and realistic images across 8 countries and 3 cultural domains. Furthermore, we emphasize the importance of T2I models reflecting a culture's diversity and introduce cultural diversity as a novel metric for T2I evaluation, drawing inspiration from the Vendi Score. We introduce T2I-GCube, a first-of-its-kind benchmark for T2I evaluation. T2I-GCube includes cultural prompts, metrics, and cultural concept spaces, enabling comprehensive assessment of T2I models' cultural knowledge and diversity. Our evaluations reveal significant gaps in the cultural knowledge of existing models and provide valuable insights into the diversity of image outputs for under-specified prompts. By introducing a novel approach to evaluating cultural diversity and knowledge in T2I models, T2I-GCube will be instrumental in fostering the development of models with enhanced cultural competence. View details
    Preview abstract This paper reports on disability representation in images output from text-to-image (T2I) generative AI systems. Through eight focus groups with 25 people with disabilities, we found that models repeatedly presented reductive archetypes for different disabilities. Often these representations reflected broader societal stereotypes and biases, which our participants were concerned to see reproduced through T2I. Our participants discussed further challenges with using these models including the current reliance on prompt engineering to reach satisfactorily diverse results. Finally, they offered suggestions for how to improve disability representation with solutions like showing multiple, heterogeneous images for a single prompt and including the prompt with images generated. Our discussion reflects on tensions and tradeoffs we found among the diverse perspectives shared to inform future research on representation-oriented generative AI system evaluation metrics and development processes. View details
    Guidelines for Productivity in Virtual Reality
    Andrea Colaco
    ACM Interactions, 31 (2024), pp. 46-53
    Preview abstract Most of our interactions with digital content currently occur inside 2D screens, however moving from that format to immersive setups brings a paradigm shift. From content inside the screen to users inside the content. This change requires a revisit to how we blend the analog and the digital and how we transfer content between the two modes. Perhaps it even asks for new guidelines too. While different solutions appear in the space, the dynamic range only seems to widen. We can start to see what works and what does not work so well, in an empirical or ethnographic approach, beyond laboratory studies. But if we want to accelerate adoption we need to further the understanding on how current tasks can be improved. How this new form of interaction can increase their productivity. In this paper we focus on analyzing and converging what we think works, and envisioning how this new set of immersive devices and interactions can enable productivity beyond already existing tools. View details
    Preview abstract Background: Artificial Intelligence for health has the potential to significantly change and improve healthcare. However in most African countries identifying culturally and contextually attuned approaches for deploying these solutions is not well understood. To bridge this gap, we conduct a qualitative study to investigate the best practices, fairness indicators and potential biases to mitigate when deploying AI for health in African countries, as well as explore opportunities where artificial intelligence could make a positive impact in health. Methods: We used a mixed methods approach combining in-depth interviews (IDIs) and surveys. We conduct 1.5-2 hour long IDIs with 50 experts in health, policy and AI across 17 countries, and through an inductive approach we conduct a qualitative thematic analysis on expert IDI responses. We administer a blinded 30-minute survey with thought-cases to 672 general population participants across 5 countries in Africa (Ghana, South Africa, Rwanda, Kenya and Nigeria), and analyze responses on quantitative scales, statistically comparing responses by country, age, gender, and level of familiarity with AI. We thematically summarize open-ended responses from surveys. Results and Conclusion: Our results find generally positive attitudes, high levels of trust, accompanied by moderate levels of concern among general population participants for AI usage for health in Africa. This contrasts with expert responses, where major themes revolved around trust/mistrust, AI ethics concerns, and systemic barriers to overcome, among others. This work presents the first-of-its-kind qualitative research study of the potential of AI for health in Africa with perspectives from both experts and the general population. We hope that this work guides policy makers and drives home the need for education and the inclusion of general population perspectives in decision-making around AI usage. View details
    Measuring Developer Goals
    Ben Ferrari-Church
    IEEE Software, 41 (2024), pp. 14-19
    Preview abstract Understanding and effectively measuring developer goals is critical for enhancing developer experience and productivity. By focusing on durable, consistent, relatable, sensical, and observable goals we create a more robust view into our developers’ days. In this article, we outline our process for articulating and refining goals, provide our list of 30 rigorously-tested developer goals, and share a little bit about how we leverage both sentiment and behavioral data to measure and understand goals through different lenses. View details
    Complex Dynamics in Autobidding Systems
    Georgios Piliouras
    Kelly Spendlove
    Proceedings of the 25th ACM Conference on Economics and Computation (2024)
    Preview abstract It has become the default in markets such as ad auctions for participants to bid in an auction through automated bidding agents (autobidders) which adjust bids over time to satisfy return-over-spend constraints. Despite the prominence of such systems for the internet economy, their resulting dynamical behavior is still not well understood. Although one might hope that such relatively simple systems would typically converge to the equilibria of their underlying auctions, we provide a plethora of results that show the emergence of complex behavior, such as bi-stability, periodic orbits and quasi periodicity. We empirically observe how the market structure (expressed as motifs) qualitatively affects the behavior of the dynamics. We complement it with theoretical results showing that autobidding systems can simulate both linear dynamical systems as well logical boolean gates. View details
    Preview abstract Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x ∈ R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (Multi-Vector Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality ε-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5× fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency. View details
    Preview abstract Text-to-image diffusion models have demonstrated remarkable capabilities in transforming textual prompts into coherent images, yet the computational cost of their inference remains a persistent challenge. To address this issue, we present UFOGen, a novel generative model designed for ultra-fast, one-step text-to-image synthesis. In contrast to conventional approaches that focus on improving samplers or employing distillation techniques for diffusion models, UFOGen adopts a hybrid methodology, integrating diffusion models with a GAN objective. Leveraging a newly introduced diffusion-GAN objective and initialization with pre-trained diffusion models, UFOGen excels in efficiently generating high-quality images conditioned on textual descriptions in a single step. Beyond traditional text-to-image generation, UFOGen showcases versatility in applications. Notably, UFOGen stands among the pioneering models enabling one-step text-to-image generation and diverse downstream tasks, presenting a significant advancement in the landscape of efficient generative models. View details
    Discovering Personalized Semantics for Soft Attributes in Recommender Systems using Concept Activation Vectors
    Christina Göpfert
    Alex Haig
    Ivan Vendrov
    Tyler Lu
    Hubert Pham
    Mohammad Ghavamzadeh
    ACM Transactions on Recommender Systems (2024)
    Preview abstract Interactive recommender systems have emerged as a promising paradigm to overcome the limitations of the primitive user feedback used by traditional recommender systems (e.g., clicks, item consumption, ratings). They allow users to express intent, preferences, constraints, and contexts in a richer fashion, often using natural language (including faceted search and dialogue). Yet more research is needed to find the most effective ways to use this feedback. One challenge is inferring a user's semantic intent from the open-ended terms or attributes often used to describe a desired item, and using it to refine recommendation results. Leveraging concept activation vectors (CAVs) (Kim, et al., 2018) a recently developed approach for model interpretability in machine learning, we develop a framework to learn a representation that captures the semantics of such attributes and connects them to user preferences and behaviors in recommender systems. One novel feature of our approach is its ability to distinguish objective and subjective attributes (both subjectivity of degree and of sense), and associate different senses of subjective attributes with different users. We demonstrate on both synthetic and real-world data sets that our CAV representation not only accurately interprets users' subjective semantics, but can also be used to improve recommendations through interactive item critiquing. View details
    KATch: A Fast Symbolic Verifier for NetKAT
    Mark Moeller
    Jules Jacobs
    Olivier Savary Belanger
    David Darais
    Cole Schlesinger
    Nate Foster
    Alexandra Silva
    Programming Languages and Implementation (PLDI) (2024) (to appear)
    Preview abstract We develop new data structures and algorithms for checking verification queries in NetKAT, a domain-specific language for specifying the behavior of network data planes. Our results extend the techniques obtained in prior work on symbolic automata and provide a framework for building efficient and scalable verification tools. We present \KATch, an implementation of these ideas in Scala, including extended logical operators that are useful for expressing network-wide specifications and optimizations that construct a bisimulation quickly or generate a counter-example showing that none exists. We evaluate the performance of our implementation on real-world and synthetic benchmarks, verifying properties such as reachability and slice isolation, typically returning a result in well under a second, which is orders of magnitude faster than previous approaches. View details
    Unsupervised representation learning on high-dimensional clinical data improves genomic discovery and prediction
    Babak Behsaz
    Zachary Ryan Mccaw
    Davin Hill
    Robert Luben
    Dongbing Lai
    John Bates
    Howard Yang
    Tae-Hwi Schwantes-An
    Yuchen Zhou
    Anthony Khawaja
    Andrew Carroll
    Brian Hobbs
    Michael Cho
    Nature Genetics (2024)
    Preview abstract Although high-dimensional clinical data (HDCD) are increasingly available in biobank-scale datasets, their use for genetic discovery remains challenging. Here we introduce an unsupervised deep learning model, Representation Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), for discovering associations between genetic variants and HDCD. REGLE leverages variational autoencoders to compute nonlinear disentangled embeddings of HDCD, which become the inputs to genome-wide association studies (GWAS). REGLE can uncover features not captured by existing expert-defined features and enables the creation of accurate disease-specific polygenic risk scores (PRSs) in datasets with very few labeled data. We apply REGLE to perform GWAS on respiratory and circulatory HDCD—spirograms measuring lung function and photoplethysmograms measuring blood volume changes. REGLE replicates known loci while identifying others not previously detected. REGLE are predictive of overall survival, and PRSs constructed from REGLE loci improve disease prediction across multiple biobanks. Overall, REGLE contain clinically relevant information beyond that captured by existing expert-defined features, leading to improved genetic discovery and disease prediction. View details
    LabelMaker: Automatic Semantic Label Generation from RGB-D Trajectories
    Silvan Weder
    Hermann Blum
    Francis Engelmann
    Marc Pollefeys
    3DV (2024)
    Preview abstract Semantic annotations are indispensable to train or evaluate perception models, yet very costly to acquire. This work introduces a fully automated 2D/3D labeling framework that, without any human intervention, can generate labels for RGB-D scans at equal (or better) level of accuracy than comparable manually annotated datasets such as ScanNet. Our approach is based on an ensemble of state-of-the-art segmentation models and 3D lifting through neural rendering. We demonstrate the effectiveness of our LabelMaker pipeline by generating significantly better labels for the ScanNet datasets and automatically labelling the previously unlabeled ARKitScenes dataset. Code and models are available at https://labelmaker.org/ View details
    Preview abstract WindowMirror is a framework for using XR headsets in productivity scenarios. The toolkit provides users with a simulated, extended screen real-estate. It allows users to interact with multiple desktop applications in real-time within a XR environment. Our architecture has two main modules: one a Unity package and a Python backend, which makes it easy to use and extend. WindowMirror supports traditional desktop interaction methods such as mouse, keyboard, and hand tracking. Furthermore, it features a Cylindrical Window Layout, an emerging design pattern which is particularly effective for single-user, egocentric perspectives. The introduction of WindowMirror aims to set a foundation for future research in XR screen-focused productivity scenarios. View details