Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10471 publications
Preview abstract
Mainstream artificial neural network models, such as Deep Neural Networks (DNNs) are computation-heavy and energy-hungry. Weightless Neural Networks (WNNs) are natively built with RAM-based neurons and represent an entirely distinct type of neural network computing compared to DNNs. WNNs are extremely low-latency, low-energy, and suitable for efficient, accurate, edge inference. The WNN approach derives an implicit inspiration from the decoding process observed in the dendritic trees of biological neurons, making neurons based on Random Access Memories (RAMs) and/or Lookup Tables (LUTs) ready-to-deploy neuromorphic digital circuits. Since FPGAs are abundant in LUTs, LUT based WNNs are a natural fit for implementing edge inference in FPGAs.
WNNs has been demonstrated to be an energetically efficient AI model, both in software, as well as in hardware. For instance, the most recent DWN – Differential Weightless Neural Network – model demonstrates up to 135× reduction in energy costs in FPGA implementations compared to other multiplication-free approaches, such as binary neural networks (BNNs) and DiffLogicNet, up to 9% higher accuracy in deployments on constrained devices, and culminate in up to 42.8× reduction in circuit area for ultra-low-cost chip implementations. This tutorial will help participants understand how WNNs work, why WNNs were underdogs for such a long time, and be introduced to the most recent members of the WNN family, such as BTHOWeN , LogicWiSARD, COIN, ULEEN and DWN, and contrast to BNNs and LogicNets.
View details
Permission Rationales in the Web Ecosystem: An Exploration of Rationale Text and Design Patterns
Yusra Elbitar
Soheil Khodayari
Marian Harbach
Gianluca De Stefano
Balazs Engedy
Giancarlo Pellegrino
Sven Bugiel
CHI 2025, ACM
Preview abstract
Modern web applications rely on features like camera and geolocation for personalized experiences, requiring user permission via browser prompts. To explain these requests, applications provide rationales—contextual information on why permissions are needed. Despite their importance, little is known about how rationales appear on the web or their influence on user decisions.
This paper presents the first large-scale study of how the web ecosystem handles permission rationales, covering three areas: (i) identifying webpages that use permissions, (ii) detecting and classifying permission rationales, and (iii) analyzing their attributes to understand their impact on user decisions. We examined over 770K webpages from Chrome telemetry, finding 3.6K unique rationale texts and 749 rationale UIs across 85K pages. We extracted key rationale attributes and assessed their effect on user behavior by cross-referencing them with Chrome telemetry data. Our findings reveal nine key insights, providing the first evidence of how different rationales affect user decisions.
View details
AI Agents for Cloud Reliability: Autonomous Threat Detection and Mitigation Aligned with Site Reliability Engineering Principles
Preview
Karan Anand
Mourya Chigurupati
2025
Preview abstract
Modern deep learning algorithms use variations of gradient descent as their main learning methods. Gradient descent can be understood as the simplest Ordinary Differential Equation (ODE) solver; namely, the Euler method applied to the gradient flow differential equation. Since Euler, many ODE solvers have been devised that follow the gradient flow equation more precisely and more stably. Runge-Kutta (RK) methods provide a family of very powerful explicit and implicit high-order ODE solvers. However, these higher-order solvers have not found wide application in deep learning so far. In this work, we evaluate the performance of higher-order RK solvers when applied in deep learning, study their limitations, and propose ways to overcome these drawbacks. In particular, we explore how to improve their performance by naturally incorporating key ingredients of modern neural network optimizers such as preconditioning, adaptive learning rates, and momentum.
View details
Neural Pathways to Program Success: Hopfield Networks for PERT Analysis
Proceedings of Technology and Engineering Management Society Conference (TEMSCON Global), IEEE (2025)
Preview abstract
Project and task scheduling under uncertainty remains a fundamental challenge in program and project management, where accurate estimation of task durations and dependencies is critical for delivering complex, multi project systems. The Program Evaluation and Review Technique provides a probabilistic framework to model task variability and critical paths. In this paper, the author presents a novel formulation of PERT scheduling as an energy minimization problem within a Hopfield neural network architecture. By mapping task start times and precedence constraints into a neural computation framework, the networks inherent optimization dynamics is exploited to approximate globally consistent schedules. The author addresses key theoretical issues related to energy function differentiability, constraint encoding, and convergence, and extends the Hopfield model for structured precedence graphs. Numerical simulations on synthetic project networks comprising up to 1000 tasks demonstrate the viability of this approach, achieving near optimal makespans with minimal constraint violations. The findings suggest that neural optimization models offer a promising direction for scalable and adaptive project tasks scheduling under uncertainty in areas such as the agentic AI workflows, microservice based applications that the modern AI systems are being built upon.
View details
Silent Data Corruption by 10× Test Escapes Threatens Reliable Computing
Rama Govindaraju
Eric Liu
Subhasish Mitra
Mike Fuller
IEEE (2025) (to appear)
Preview abstract
Summary:
Silent Data Corruption by 10x Test Escapes Threatens Reliable Computing" highlights a critical issue: manufacturing defects, dubbed "test escapes," are evading current testing methods at an alarming rate, ten times higher than industry targets. These defects lead to Silent Data Corruption (SDC), where applications produce incorrect outputs without error indications, costing companies significantly in debugging, data recovery, and service disruptions. The paper proposes a three-pronged approach: quick diagnosis of defective chips directly from system-level behaviors, in-field detection using advanced testing and error detection techniques like CASP, and new, rigorous test experiments to validate these solutions and improve manufacturing testing practices.
View details
Fast ACS: Low-Latency File-Based Ordered Message Delivery at Scale
Anil Raghunath Iyer
Neel Bagora
Chang Yu
Olivier Pomerleau
Vivek Kumar
Prunthaban Kanthakumar
Usenix Annual Technical Conference (2025)
Preview abstract
Low-latency message delivery is crucial for real-time systems. Data originating from a producer must be delivered to consumers, potentially distributed in clusters across metropolitan and continental boundaries. With the growing scale of computing, there can be several thousand consumers of the data. Such systems require a robust messaging system capable of transmitting messages containing data across clusters and efficiently delivering them to consumers. The system must offer guarantees like ordering and at-least-once delivery while avoiding overload on consumers, allowing them to consume messages at their own pace.
This paper presents the design of Fast ACS (an abbreviation for Ads Copy Service), a file-based ordered message delivery system that leverages a combination of two-sided (inter-cluster) and one-sided (intra-cluster) communication primitives—namely, Remote Procedure Call and Remote Direct Memory Access, respectively—to deliver messages. The system has been successfully deployed to dozens of production clusters and scales to accommodate several thousand consumers within each cluster, which amounts to Tbps-scale intra-cluster consumer traffic at peak. Notably, Fast ACS delivers messages to consumers across the globe within a few seconds or even sub-seconds (p99) based on the message volume and consumer scale, at a low resource cost.
View details
The Cost of Consistency: Submodular Maximization with Constant Recourse
Paul Duetting
Federico Fusco
Ashkan Norouzi Fard
Ola Svensson
Proceedings of the 57th Annual ACM Symposium on Theory of Computing (2025), 1406–1417
Preview abstract
In this work, we study online submodular maximization and how the requirement of maintaining a stable solution impacts the approximation. In particular, we seek bounds on the best-possible
approximation ratio that is attainable when the algorithm is allowed to make, at most, a constant number of updates per step. We show a tight information-theoretic bound of $2/3$ for general monotone submodular functions and an improved (also tight) bound of $3/4$ for coverage functions. Since both these bounds are attained by non poly-time algorithms, we also give a poly-time randomized algorithm that achieves a $0.51$-approximation. Combined with an
information-theoretic hardness of $1/2$ for deterministic algorithms from prior work, our work thus shows a separation between deterministic and randomized algorithms, both information theoretically and for poly-time algorithms.
View details
Towards Conversational AI for Disease Management
Khaled Saab
David Stutz
Kavita Kulkarni
Sara Mahdavi
Joelle Barral
James Manyika
Ryutaro Tanno
Adam Rodman
arXiv (2025)
Preview abstract
While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic system optimised for clinical management and dialogue, incorporating reasoning over the evolution of disease and multiple patient visit encounters, response to therapy, and professional competence in medication prescription. To ground its reasoning in authoritative clinical knowledge, AMIE leverages Gemini's long-context capabilities, combining in-context retrieval with structured reasoning to align its output with relevant and up-to-date clinical practice guidelines and drug formularies. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) study, AMIE was compared to 21 primary care physicians (PCPs) across 100 multi-visit case scenarios designed to reflect UK NICE Guidance and BMJ Best Practice guidelines. AMIE was non-inferior to PCPs in management reasoning as assessed by specialist physicians and scored better in both preciseness of treatments and investigations, and in its alignment with and grounding of management plans in clinical guidelines. To benchmark medication reasoning, we developed RxQA, a multiple-choice question benchmark derived from two national drug formularies (US, UK) and validated by board-certified pharmacists. While AMIE and PCPs both benefited from the ability to access external drug information, AMIE outperformed PCPs on higher difficulty questions. While further research would be needed before real-world translation, AMIE's strong performance across evaluations marks a significant step towards conversational AI as a tool in disease management.
View details
Passive Heart Rate Monitoring During Smartphone Use in Everyday Life
Shun Liao
Paolo Di Achille
Jiang Wu
Silviu Borac
Jonathan Wang
Eric Teasley
Lawrence Cai
Daniel McDuff
Hao-Wei Su
Brent Winslow
Anupam Pathak
Shwetak Patel
Jim Taylor
Jamie Rogers
(2025)
Preview abstract
Resting heart rate (RHR) is an important biomarker of cardiovascular health and mortality, but tracking it longitudinally generally requires a wearable device, limiting its availability. We present PHRM, a deep learning system for passive heart rate (HR) and RHR measurements during ordinary smartphone use, using facial video-based photoplethysmography. Our system was developed using 225,773 videos from 495 participants and validated on 185,970 videos from 205 participants in laboratory and free-living conditions – the largest validation study of its kind. Compared to reference electrocardiogram, PHRM achieved a mean absolute percentage error (MAPE) <10% for HR measurements across three skin tone groups of light, medium and dark pigmentation; MAPE for each skin tone group was non-inferior versus the others. Daily RHR measured by PHRM had a mean absolute error <5 bpm compared to a wearable HR tracker, and was associated with known risk factors. These results highlight the potential of smartphones to enable passive and equitable heart health monitoring.
View details
How Unique is Whose Web Browser? The role of demographics in browser fingerprinting
Pritish Kamath
Robin Lassonde
2025
Preview abstract
Web browser fingerprinting can be used to identify and track users across the Web, even without cookies, by collecting attributes from users' devices to create unique "fingerprints". This technique and resulting privacy risks have been studied for over a decade. Yet further research is limited because prior studies did not openly publish their data. Additionally, data in prior studies had biases and lacked user demographics.
Here we publish a first-of-its-kind open dataset that includes browser attributes with users' demographics, collected from 8,400 US study participants, with their informed consent. Our data collection process also conducted an experiment to study what impacts users' likelihood to share browser data for open research, in order to inform future data collection efforts, with survey responses from a total of 12,461 participants. Female participants were significantly less likely to share their browser data, as were participants who were shown the browser data we asked to collect.
In addition we demonstrate how fingerprinting risks differ across demographic groups. For example, we find lower income users are more at risk, and find that as users' age increases, they are both more likely to be concerned about fingerprinting and at real risk of fingerprinting. Furthermore, we demonstrate an overlooked risk: user demographics, such as gender, age, income level, ethnicity and race, can be inferred from browser attributes commonly used for fingerprinting, and we identify which browser attributes most contribute to this risk.
Overall, we show the important role of user demographics in the ongoing work that intends to assess fingerprinting risks and improve user privacy, with findings to inform future privacy enhancing browser developments. The dataset and data collection tool we openly publish can be used to further study research questions not addressed in this work.
View details
User-Centered Delivery of AI-Powered Health Care Technologies in Clinical Settings: Mixed Methods Case Study
Randall Brandt
Hien Brown
Christine Silva
JMIR Human Factors (2025)
Preview abstract
Background:
Providers spend a large percentage of their day using electronic health record (EHR) technology and frequently report frustration when EHR tasks are time-consuming and effortful. To solve these challenges, artificial intelligence (AI)–based enhancements to EHR technology are increasingly being deployed. However, AI-based implementations for EHR features often lack user-centered evaluation.
Objective:
This study evaluates, using a user-centered approach, the implementation of an AI-powered search and clinical discovery tool within an EHR system.
Methods:
We conducted a mixed methods study consisting of interviews, observations, and surveys for 5 months.
Results:
High adoption rates for the AI-based features (163/176, 93% users after 3 months) and significant increases across key metrics, including user satisfaction (U=49; P<.001) and perception of time saved (U=49; P<.001), demonstrated that the AI-based features were not only successfully integrated into various clinical workflows but also improved the user experience for clinicians.
Conclusions:
Our results underscore the feasibility and effectiveness of using a user-centered approach for the deployment of clinical AI tools. High adoption rates and positive user experiences were driven by our user-centered research program, which emphasized close collaboration with users, rapid incorporation of feedback, and tailored user training. This study program can be used as a starting framework for the design and integration of human-centered research methods for AI tool deployment in clinical settings.
View details
Fast electronic structure quantum simulation by spectrum amplification
Guang Hao Low
Robbie King
Dominic Berry
Qiushi Han
Albert Eugene DePrince III
Alec White
Rolando Somma
arXiv:2502.15882 (2025)
Preview abstract
The most advanced techniques using fault-tolerant quantum computers to estimate the ground-state energy of a chemical Hamiltonian involve compression of the Coulomb operator through tensor factorizations, enabling efficient block-encodings of the Hamiltonian. A natural challenge of these methods is the degree to which block-encoding costs can be reduced. We address this challenge through the technique of spectrum amplification, which magnifies the spectrum of the low-energy states of Hamiltonians that can be expressed as sums of squares. Spectrum amplification enables estimating ground-state energies with significantly improved cost scaling in the block encoding normalization factor $\Lambda$ to just $\sqrt{2\Lambda E_{\text{gap}}}$, where $E_{\text{gap}} \ll \Lambda$ is the lowest energy of the sum-of-squares Hamiltonian. To achieve this, we show that sum-of-squares representations of the electronic structure Hamiltonian are efficiently computable by a family of classical simulation techniques that approximate the ground-state energy from below. In order to further optimize, we also develop a novel factorization that provides a trade-off between the two leading Coulomb integral factorization schemes-- namely, double factorization and tensor hypercontraction-- that when combined with spectrum amplification yields a factor of 4 to 195 speedup over the state of the art in ground-state energy estimation for models of Iron-Sulfur complexes and a CO$_{2}$-fixation catalyst.
View details
Global earthquake detection and warning using Android phones
Marc Stogaitis
Youngmin Cho
Richard Allen
Boone Spooner
Patrick Robertson
Micah Berman
Greg Wimpey
Robert Bosch
Nivetha Thiruverahan
Steve Malkos
Alexei Barski
Science, 389 (2025), pp. 254-259
Preview abstract
Earthquake early-warning systems are increasingly being deployed as a strategy to reduce losses in earthquakes, but the regional seismic networks they require do not exist in many earthquake-prone countries. We use the global Android smartphone network to develop an earthquake detection capability, an alert delivery system, and a user feedback framework. Over 3 years of operation, the system detected an average of 312 earthquakes per month with magnitudes from M 1.9 to M 7.8 in Türkiye. Alerts were delivered in 98 countries for earthquakes with M ≥4.5, corresponding to ~60 events and 18 million alerts per month. User feedback shows that 85% of people receiving an alert felt shaking, and 36, 28, and 23% received the alert before, during, and after shaking, respectively. We show how smartphone-based earthquake detection algorithms can be implemented at scale and improved through postevent analysis.
View details
Preview abstract
This paper discusses the migration of data orchestration workflows from a legacy tool like Autosys to a modern, cloud - based solution, Google Cloud Composer. It explores the transition from traditional job scheduling to Directed Acyclic Graph (DAG) - based workflows using Apache Airflow, culminating in the deployment and management of these workflows in Cloud Composer. The benefits and challenges of this migration are examined, highlighting the advantages of scalability, flexibility, and cloud integration offered by Cloud Composer.
View details