Satish Chandra
Satish Chandra is a researcher at Google, where he applies machine learning techniques to improve developer productivity. Prior to that, he has worked -- in reverse chronological order -- at Facebook, Samsung Research, IBM Research, and Bell Laboratories. His work has spanned many areas of programming languages and software engineering, including program analysis, type systems, software synthesis, bug finding and repair, software testing and test automation, and web technologies. His research has been widely published in leading conferences in his field, including POPL, PLDI, ICSE, FSE and OOPSLA. The projects he has led have had significant industrial impact: in addition to his work on developer productivity at Facebook, his work on bug finding tools shipped in IBM's Java static analysis product, his work on test automation was adopted in IBM's testing services offering, and his work on memory profiling of web apps was included in Samsung's Tizen IDE.
Satish Chandra obtained a PhD from the University of Wisconsin-Madison, and a B.Tech from the Indian Institute of Technology-Kanpur, both in computer science. He is an ACM Distinguished Scientist and an elected member of WG 2.4.
Research Areas
Authored Publications
Sort By
Resolving Code Review Comments with Machine Learning
Alexander Frömmgen
Peter Choy
Elena Khrapko
Marcus Revaj
2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (to appear)
Preview abstract
Code reviews are a critical part of the software development process, taking a significant amount of the code authors’ and the code reviewers’ time. As part of this process, the reviewer inspects the proposed code and asks the author for code changes through comments written in natural language. At Google, we see millions of reviewer comments per year, and authors require an average of ∼60 minutes active shepherding time between sending changes for review and finally submitting the change. In our measurements, the required active work time that the code author must devote to address reviewer comments grows almost linearly with the number of comments. However, with machine learning (ML), we have an opportunity to automate and streamline the code-review process, e.g., by proposing code changes based on a comment’s text.
We describe our application of recent advances in large sequence models in a real-world setting to automatically resolve code-review comments in the day-to-day development workflow at Google. We present the evolution of this feature from an asynchronous generation of suggested edits after the reviewer sends feedback, to an interactive experience that suggests code edits to the reviewer at review time. In deployment, code-change authors at Google address 7.5% of all reviewer comments by applying an ML-suggested edit. The impact of this will be to reduce the time spent on code reviews by hundreds of thousands of engineer hours annually at Google scale. Unsolicited, very positive feedback highlights that the impact of ML-suggested code edits increases Googlers’ productivity and allows them to focus on more creative and complex tasks.
View details
Preview abstract
The evolution of AI is a pivotal moment in history, but it’s not the first time we have experienced technological advances that have changed how humans work. By looking at the advances in automobiles, we are reminded of the importance of focusing on our developers' needs and goals.
View details