Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10132 publications
Language Model Beats Diffusion -- Tokenizer is Key to Visual Generation
Nitesh Bharadwaj Gundavarapu
Luca Versari
Kihyuk Sohn
Agrim Gupta
Xiuye Gu
Alex Hauptmann
Boqing Gong
Lu Jiang
ICLR (2024)
Preview abstract
While Large Language Models (LLMs) are the dominant models for generative tasks in language, they do not perform as well as diffusion models on image and video generation. To effectively use LLMs for visual generation, one crucial component is the visual tokenizer that maps pixel-space inputs to discrete tokens appropriate for LLM learning. In this paper, we introduce MAGVIT-v2, a video tokenizer designed to generate concise and expressive tokens for both videos and images using a common token vocabulary. Equipped with this new tokenizer, we show that LLMs outperform diffusion models on standard image and video generation benchmarks including ImageNet and Kinetics. In addition, we demonstrate that our tokenizer surpasses the previously top-performing video tokenizer on two more tasks: (1) video compression comparable to the next-generation video codec (VCC) according to human evaluations, and (2) learning effective representations for action recognition tasks.
View details
DiffHuman: Probabilistic Photorealistic 3D Reconstruction of Humans
Akash Sengupta
Enric Corona
Andrei Zanfir
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Preview abstract
We present DiffHuman, a probabilistic method for photorealistic 3D human reconstruction from a single RGB image. Despite the ill-posed nature of this problem, most methods are deterministic and output a single solution, often resulting in a lack of geometric detail and blurriness in unseen or uncertain regions. In contrast, DiffHuman predicts a distribution over 3D reconstructions conditioned on an image, which allows us to sample multiple detailed 3D avatars that are consistent with the input image. DiffHuman is implemented as a conditional diffusion model that denoises partial observations of an underlying pixel-aligned 3D representation. In testing, we can sample a 3D shape by iteratively denoising renderings of the predicted intermediate representation. Further, we introduce an additional generator neural network that approximates rendering with considerably reduced runtime (55x speed up), resulting in a novel dual-branch diffusion framework. We evaluate the effectiveness of our approach through various experiments. Our method can produce diverse, more detailed reconstructions for the parts of the person not observed in the image, and has competitive performance for the surface reconstruction of visible parts.
View details
Bridging the Preference Gap between Retrievers and LLMs
Zixuan Ke
Qiaozhu Mei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024) (to appear)
Preview abstract
Large Language Models (LLMs) have demonstrated superior results across a wide range of tasks, and Retrieval-augmented Generation (RAG) is an effective way to enhance the performance by locating relevant information and placing it into the context window of the LLM. However, the relationship between retrievers and LLM in a RAG is still under-investigated. Most existing work treats the retriever and the LLM as independent components and leaves a gap between retrieving human-"friendly" information and assembling a LLM-"friendly" context. In this work, we examine a novel bridge mechanism. We validate the ranking and selection assumptions of retrievers in the context of RAG and propose a framework that chains together supervised and reinforcement learning to train a bridge model that optimizes the connection between the retriever and the LLM. Empirical results demonstrate the effectiveness of our method in both question-answering and personalized generation tasks.
View details
Exploring the Feasibility of Remote Cardiac Auscultation Using Earphones
Tao Chen
Yongjie Yang
Xiuzhen Guo
Jie Xiong
Shangguan Longfei
MobiCom 2024: The 30th Annual International Conference On Mobile Computing And Networking
Preview abstract
The elderly over 65 accounts for 80% of COVID deaths in the United States. In response to the pandemic, the federal, state governments, and commercial insurers are promoting video visits, through which the elderly can access specialists at home over the Internet, without the risk of COVID exposure. However, the current video visit practice barely relies on video observation and talking. The specialist could not assess the patient's health conditions by performing auscultations.
This paper tries to address this key missing component in video visits by proposing Asclepius, a hardware-software solution that turns the patient's earphones into a stethoscope, allowing the specialist to hear the patient's fine-grained heart sound (i.e., PCG signals) in video visits. To achieve this goal, we contribute a low-cost plug-in peripheral that repurposes the earphone's speaker into a microphone and uses it to capture the patient's minute PCG signals from her ear canal. As the PCG signals suffer from strong attenuation and multi-path effects when propagating from the heart to ear canals, we then propose efficient signal processing algorithms coupled with a data-driven approach to de-reverberate and further correct the amplitude and frequency distortion in raw PCG receptions. We implement Asclepius on a 2-layer PCB board and follow the IRB protocol to evaluate its performance with 30 volunteers. Our extensive experiments show that Asclepius can effectively recover Phonocardiogram (PCG) signals with different types of earphones. The feedback from cardiologists also confirms the efficacy and efficiency of our system. PCG signal samples and benchmark results can be found at an anonymous link https://asclepius-system.github.io/
View details
Preview abstract
Motivated by the necessity of guiding and monitoring students' progress in real-time when assembling circuits during in-class activities we propose BlinkBoard, an augmented breadboard to enhance offline as well as online physical computing classes. BlinkBoard uses LEDs placed on each row of the breadboard to guide, via four blinking patterns, how to place and connect components and wires. It also uses a set of Input/Output pins to sense voltage levels at user-specified rows or to generate voltage output. Our hardware uses an open JSON protocol of commands and responses that can be integrated with a graphical application hosted on a computer that ensures bidirectional communication between each of the students' BreadBoard and the instructor's dashboard and slides. The hardware is affordable and simple, partially due to a customized circuit configured via a hardware description language that handles the LEDs' patterns with minimal load on the Arduino micro-controller. Finally, we briefly show how this hardware made its way to a workshop with high-school students and an undergraduate class in a design department.
View details
ConSmax: Hardware-Friendly Alternative Softmax with Learnable Parameters
Shiwei Liu
Guanchen Tao
Yifei Zou
Derek Chow
Zichen Fan
Kauna Lei
Bangfei Pan
Dennis Sylvester
Mehdi Saligane
Arxiv (2024)
Preview abstract
The self-attention mechanism sets transformer-based large language model (LLM) apart from the convolutional and recurrent neural networks. Despite the performance improvement, achieving real-time LLM inference on silicon is challenging due to the extensively used Softmax in self-attention. Apart from the non-linearity, the low arithmetic intensity greatly reduces the processing parallelism, which becomes the bottleneck especially when dealing with a longer context. To address this challenge, we propose Constant Softmax (ConSmax), a software-hardware co-design as an efficient Softmax alternative. ConSmax employs differentiable normalization parameters to remove the maximum searching and denominator summation in Softmax. It allows for massive parallelization while performing the critical tasks of Softmax. In addition, a scalable ConSmax hardware utilizing a bitwidth-split look-up table (LUT) can produce lossless non-linear operation and support mix-precision computing. It further facilitates efficient LLM inference. Experimental results show that ConSmax achieves a minuscule power consumption of 0.2 mW and area of 0.0008 mm^2 at 1250-MHz working frequency and 16-nm CMOS technology. Compared to state-of-the-art Softmax hardware, ConSmax results in 3.35x power and 2.75x area savings with a comparable accuracy on a GPT-2 model and the WikiText103 dataset.
View details
A Chain-of-Thought Is as Strong as Its Weakest Link: A Benchmark for Verifiers of Reasoning Chains
Alon Jacovi
Or Honovich
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024), pp. 4615–4634
Preview abstract
Prompting language models to provide step-by-step answers (e.g., “Chain-of-Thought”) is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce REVEAL: Reasoning Verification Evaluation, a dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question-answering settings. REVEAL includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model’s answer, across a variety of datasets and state-of-the-art language models. Evaluation on REVEAL shows that verifiers struggle at verifying reasoning chains — in particular, verifying logical correctness and detecting contradictions. Available at https://reveal-dataset.github.io/.
View details
A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models
Shengyao Zhuang
Bevan Koopman
Guido Zuccon
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
Preview abstract
We propose a novel zero-shot document ranking approach based on Large Language Models (LLMs): the Setwise prompting approach. Our approach complements existing prompting approaches for LLM-based zero-shot ranking: Pointwise, Pairwise, and Listwise. Through the first-of-its-kind comparative evaluation within a consistent experimental framework and considering factors like model size, token consumption, latency, among others, we show that existing approaches are inherently characterised by trade-offs between effectiveness and efficiency. We find that while Pointwise approaches score high on efficiency, they suffer from poor effectiveness. Conversely, Pairwise approaches demonstrate superior effectiveness but incur high computational overhead. Our Setwise approach, instead, reduces the number of LLM inferences and the amount of prompt token consumption during the ranking procedure, compared to previous methods. This significantly improves the efficiency of LLM-based zero-shot ranking, while also retaining high zero-shot ranking effectiveness. We make our code and results publicly available at https://github.com/ielab/llm-rankers.
View details
Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
Minghan Li
Jimmy Lin
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’24) (2024)
Preview abstract
Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, crossencoder rankers remains under-explored. A recent study shows that current expansion techniques benefit weaker models but harm stronger rankers. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to different crossencoder rankers and verify the deteriorated zero-shot effectiveness. We identify two vital steps in the experiment: high-quality keyword generation and minimally-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by generating keywords through a reasoning chain and aggregating the ranking results of each expanded query via selfconsistency, reciprocal rank weighting, and fusion. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.
View details
With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser APIs
Harun Oz
Daniele Cono D’Elia
Abbas Acar
Riccardo Lazzeretti
Selcuk Uluagac
IEEE Security and Privacy (2024)
Preview abstract
This paper discusses security and privacy issues in modern Browser
APIs by categorizing them based on their functionality. With this study, we aim to
alert the community about these issues and motivate further research into
analyzing the security and privacy concerns within modern Browser APIs.
View details
Augmented Object Intelligence with XR-Objects
Mustafa Doga Dogan
Karan Ahuja
Andrea Colaco
Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (UIST), ACM (2024), pp. 1-15
Preview abstract
Seamless integration of physical objects as interactive digital entities remains a challenge for spatial computing. This paper explores Augmented Object Intelligence (AOI) in the context of XR, an interaction paradigm that aims to blur the lines between digital and physical by equipping real-world objects with the ability to interact as if they were digital, where every object has the potential to serve as a portal to digital functionalities. Our approach utilizes real-time object segmentation and classification, combined with the power of Multimodal Large Language Models (MLLMs), to facilitate these interactions without the need for object pre-registration. We implement the AOI concept in the form of XR-Objects, an open-source prototype system that provides a platform for users to engage with their physical environment in contextually relevant ways using object-based context menus. This system enables analog objects to not only convey information but also to initiate digital actions, such as querying for details or executing tasks. Our contributions are threefold: (1) we define the AOI concept and detail its advantages over traditional AI assistants, (2) detail the XR-Objects system’s open-source design and implementation, and (3) show its versatility through various use cases and a user study.
View details
Developer Ecosystems for Software Safety
Commun. ACM, 67(6) (2024), 52–60
Preview abstract
This paper reflects on work at Google over the past decade to address common types of software safety and security defects. Our experience has shown that software safety is an emergent property of the software and tooling ecosystem it is developed in and the production environment into which it is deployed. Thus, to effectively prevent common weaknesses at scale, we need to shift-left the responsibility for ensuring safety and security invariants to the end-to-end developer ecosystem, that is, programming languages, software libraries, application frameworks, build and deployment tooling, the production platform and its configuration surfaces, and so forth.
Doing so is practical and cost effective when developer ecosystems are designed with application archetypes in mind, such as web or mobile apps: The design of the developer ecosystem can address threat model aspects that apply commonly to all applications of the respective archetype, and investments to ensure safety invariants at the ecosystem level amortize across many applications.
Applying secure-by-design principles to developer ecosystems at Google has achieved drastic reduction and in some cases near-zero residual rates of common classes of defects, across hundreds of applications being developed by thousands of developers.
View details
PRISM: A New Lens for Improved Color Understanding
Garima Pruthi
Inderjit Dhillon
Varun Jampani
EMNLP (2024)
Preview abstract
While image-text pre-trained models, such as CLIP, have demonstrated impressive capabilities in learning robust text and image representations, a critical area for substantial improvement remains—precise color understanding. In this paper, we address this limitation by introducing PRISM, a simple yet highly effective method that extends CLIP's capability to grasp the nuances of precise colors. PRISM seamlessly adapts to both recognized HTML colors and out-of-vocabulary RGB inputs through the utilization of our curated dataset of 100 image-text pairs, which can be effortlessly repurposed for fine-tuning with any desired color. Importantly, PRISM achieves these enhancements without compromising CLIP's performance on established benchmarks. During the fine-tuning process, PRISM encourages the disentanglement of color-relevant information from color-irrelevant details. Furthermore, we introduce a novel evaluation framework, ColorLens, featuring both seen and unseen test sets that can be readily repurposed to assess a model's precision in understanding precise colors. Our comprehensive evaluation and results demonstrate significant improvements over baseline models.
View details
Preview abstract
Misgendering refers to the act of incorrectly identifying or addressing someone's gender.
While misgendering is both a factual inaccuracy and a toxic act of identity erasure, research on fact-checking and toxicity detection does not address it.
We are the first to bridge this gap by introducing a dataset, \dataset, to assist in developing interventions for misgendering.
The misgendering interventions task can be divided into two sub-tasks: (i) detecting misgendering, followed by (ii) editing misgendering where misgendering is present, in domains where editing is appropriate.
We introduce a dataset containing a total of 3806 instances of tweets, YouTube comments, and LLM-generated text about 30 non-cisgender individuals annotated for whether they contain misgendering or not.
LLM-generated text is also annotated for edits required to fix misgendering.
Using this dataset, we set initial benchmarks by evaluating existing NLP systems and highlight challenges for future models to address.
Additionally, we conducted a survey of non-cisgender individuals in the US to understand opinions about automated interventions for text-based misgendering.
We find interest for interventions along with concerns for potential harm.
View details
Preview abstract
The state-of-the-art for training on-device language models for mobile keyboard applications combines federated learning (FL) with differential privacy (DP) via the DP-Follow-the-Regularized-Leader (DP-FTRL) algorithm. Two variants of DP-FTRL are used in practice, tree aggregation and matrix factorization. However, tree aggregation suffers from significantly suboptimal privacy/utility tradeoffs, while matrix mechanisms require expensive optimization parameterized by hard-to-estimate-in-advance constants, and high runtime memory costs.This paper extends the recently introduced Buffered Linear Toeplitz (BLT) mechanism to multi-participation scenarios. Our BLT-DP-FTRL maintains the ease-of-use advantages of tree aggregation, while essentially matching matrix factorization in terms of utility and privacy. We evaluate BLT-DP-FTRL on the StackOverflow dataset, serving as a re-producible simulation benchmark, and across four on-device language model tasks in a production FL system. Our empirical results highlight the advantages of the BLT mechanism and elevate the practicality and effectiveness of DP in real-world scenarios.
View details