Jump to Content
Hanjun Dai

Hanjun Dai

My research focuses on deep learning with structured data, including generative modeling and combinatorial optimization, and the applications for domains including chemical engineering and programming languages.

Please see my Google Scholar page for the full list of publications.

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract A hallmark of modern large language models (LLMs) is their impressive general zero-shot and few-shot abilities, often elicited through in-context learning (ICL) via prompting. However, while highly coveted and being the most general, zero-shot performances in LLMs are still typically weaker due to the lack of guidance and the difficulty of applying existing automatic prompt design methods in general tasks when ground-truth labels are unavailable. In this study, we address this by presenting Universal Self-Adaptive Prompting (USP), an automatic prompt design approach specifically tailored for zero-shot learning (while compatible with few-shot). Requiring only a small amount of unlabeled data and an inference-only LLM, USP is highly versatile: to achieve universal prompting, USP categorizes a possible NLP task into one of the three possible task types and then uses a corresponding selector to select the most suitable queries and zero-shot model-generated responses as pseudo-demonstrations, thereby generalizing ICL to the zero-shot setup in a fully automated way. We evaluate USP with PaLM and PaLM 2 models and demonstrate performances that are considerably stronger than standard zero-shot baselines and often comparable to or even superior to few-shot baselines across more than 40 natural language understanding, natural language generation, and reasoning tasks. View details
    Preview abstract Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose "SQLPrompt", tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs ("MixPrompt") and foundation models ("MixLLMs"). We show that SQLPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin, closing the gap with finetuning state-of the-art with thousands of labeled data. View details
    Better Zero-Shot Reasoning with Self-Adaptive Prompting
    Xingchen Wan
    Findings of the Association for Computational Linguistics (ACL) (2023)
    Preview abstract Modern large language models (LLMs) have demonstrated impressive capabilities at sophisticated tasks, often through step-by-step reasoning similar to humans. This is made possible by their strong few-shot and zero shot abilities: they either learn from a handful of handcrafted, completed responses (“in context examples”), or are prompted to reason spontaneously through specially designed triggers. Nonetheless, few-shot performance is sensitive to the choice of the examples, for which artisanal hand-crafted selection would require extensive effort, and in some cases, it might not even be possible to obtain relevant examples a-priori without expertise about the downstream tasks. On the other hand, most general and handcrafting-free, zero-shot performance is limited by the lack of guidance to the LLM. To address this, we propose Consistency-based Self-adaptive Prompting (COSP), a novel prompt design method for LLMs. Requiring neither handcrafted responses nor ground-truth labels, COSP selects & builds the set of examples from the LLM’s own zero-shot outputs via carefully designed criteria combining consistency, diversity and repetition. In zero-shot setting, with only LLM predictions, COSP significantly improves performance (up to 2× compared to zero-shot baselines and matching or exceeding few-shot baselines) in a range of reasoning tasks in 3 LLMs. Moreover, COSP can be generalized to few-shot setting and can take advantage of few labeled examples in an efficient way View details
    Learning to Walk over Relational Graphs of Source Code
    Pardis Pashakhanloo
    Aaditya Naik
    Mayur Naik
    Deep Learning for Code (DL4C) Workshop @ ICLR 2022 (2022)
    Preview abstract Information-rich relational graphs have shown great potential in designing effective representations of code for program-understanding tasks. However, the wealth of structural and semantic information in such graphs can overwhelm models, because of their limited input size. A promising approach for overcoming this challenge is to gather presumed-relevant but smaller context from a larger graph, and random walks over graphs was one of the first such approaches discovered. We propose a deep-learning approach that improves upon random walks by learning task-specific walk policies that guide the traversal of the graph towards the most relevant context. In the setting of relational graphs representing programs and their semantic properties, we observe that models that employ learned policies for guiding walks are 6--36% points more accurate than models that employ uniform random walks, and 0.2--3.5% points more accurate than models that employ expert knowledge for guiding the walks. View details
    CrossBeam: Learning to Search in Bottom-Up Program Synthesis
    Kevin Ellis
    International Conference on Learning Representations (ICLR) (2022) (to appear)
    Preview abstract Many approaches to program synthesis perform a search within an enormous space of programs to find one that satisfies a given specification. Prior works have used neural models to guide combinatorial search algorithms, but such approaches still explore a huge portion of the search space and quickly become intractable as the size of the desired program increases. To tame the search space blowup, we propose training a neural model to learn a hands-on search policy for bottom-up synthesis, instead of relying on a combinatorial search algorithm. Our approach, called CrossBeam, uses the neural model to choose how to combine previously-explored programs into new programs, taking into account the search history and partial program executions. Motivated by work in structured prediction on learning to search, CrossBeam is trained on-policy using data extracted from its own bottom-up searches on training tasks. We evaluate CrossBeam in two very different domains, string manipulation and logic programming. We observe that CrossBeam learns to search efficiently, exploring much smaller portions of the program space compared to the state-of-the-art. View details
    Preview abstract Stochastic dual dynamic programming~(SDDP) is one of the state-of-the-art algorithm for multi-stage stochastic optimization, yet its cost exponentially increases w.r.t. the size of decision variables, therefore, quickly becomes inapplicable for high-dimension problems. We introduce a neuralized component into SDDP, which outputs a \emph{piece-wise linear function} in a \emph{low-dimension} space to approximate the value function, based on the \emph{context of the problem instances}. The neuralized component will consistently evolve to abstract effective low-dimension action space and improve the quality of value function approximation for each problem based on prior successful experiences. It is seamlessly integrated with SDDP, formed our neural enhanced solver,~\AlgName~(\algshort), which achieves the optimality \emph{without loss of accuracy} in \emph{faster speed} for high-dimension and long-horizon multi-stage stochastic optimizations. We conduct thorough empirical experiments to demonstrate the benefits of \algshort from transferability on scalability.~\algshort significantly outperforms the competitors, including SDDP and variants of RL algorithms, in terms of solution quality and feasibility, and computational speed. View details
    Preview abstract Designing a suitable representation for code-reasoning tasks is challenging in aspects such as the kinds of program information to model, how to combine them, and how much context to consider. We propose CodeTrek, a deep learning approach that addresses these challenges by representing codebases as databases that conform to rich relational schemas. The relational representation not only allows CodeTrek to uniformly represent diverse kinds of program information, but also to leverage program-analysis queries to derive new semantic relations, which can be readily incorporated without further architectural engineering. CodeTrek embeds this relational representation using a set of walks that can traverse different relations in an unconstrained fashion, and incorporates all relevant attributes along the way. We evaluate CodeTrek on four diverse and challenging Python tasks: variable misuse, exception prediction, unused definition, and variable shadowing. CodeTrek achieves an accuracy of 91%, 63%, 98%, and 94% on these tasks respectively, and outperforms state-of-the-art neural models by 2--19% points. View details
    Preview abstract Extracting informative representations of molecules using Graph neural networks (GNNs) is crucial in AI-driven drug discovery. Recently, the graph research community has been trying to replicate the success of self-supervised pretraining in natural language processing, with several successes claimed. However, we find the benefit brought by self-supervised pretraining on small molecular data can be negligible in many cases. We conduct thorough ablation studies on the key components of GNN pretraining, including pretraining objectives, data splitting methods, input features, pretraining dataset scales, and GNN architectures, to see how they affect the accuracy of the downstream tasks. Our first important finding is, self-supervised graph pretraining do not always have statistically significant advantages over non-pretraining methods in many settings. Secondly, although noticeable improvement can be observed with additional supervised pretraining, the improvement may diminish with richer features or more balanced data splits. Thirdly, hyper-parameters could have larger impacts on accuracy of downstream tasks than the choice of pretraining tasks, especially when the scales of downstream tasks are small. Finally, we provide our conjectures where the complexity of some pretraining methods on small molecules might be insufficient, followed by empirical evidences on different pretraining datasets. View details
    Preview abstract Retrosynthesis is the process of identifying a set of reactants to synthesize a target molecule. It is critical to material design and drug discovery. Existing machine learning approaches based on language models and graph neural networks have achieved encouraging results. However, the inner connections of these models are rarely discussed, and rigorous evaluations of these models are largely in need. In this paper, we propose a framework that unifies sequence- and graph-based methods as energy-based models (EBMs) with different energy functions. This unified view establishes connections and reveals the differences between models, thereby enhances our understanding of model design. We also provide a comprehensive assessment of performance to the community. Additionally, we present a novel dual variant within the framework that performs consistent training to induce the agreement between forward- and backward-prediction. This model improves the state-of-the-art of template-free methods with or without reaction types. View details
    Preview abstract Spreadsheet formula prediction has been an important program synthesis problem with many real-world applications. Previous works typically utilize input-output examples as the specification for spreadsheet formula synthesis, where each input-output pair simulates a separate row in the spreadsheet. However, this formulation does not fully capture the rich context in real-world spreadsheets. First, spreadsheet data entries are organized as tables, thus rows and columns are not necessarily independent from each other. In addition, many spreadsheet tables include headers, which provide high-level descriptions of the cell data. However, previous synthesis approaches do not consider headers as part of the specification. In this work, we present the first approach for synthesizing spreadsheet formulas from tabular context, which includes both headers and semi-structured tabular data. In particular, we propose SpreadsheetCoder, a BERT-based model architecture to represent the tabular context in both row-based and column-based formats. We train our model on a large dataset of spreadsheets, and demonstrate that SpreadsheetCoder achieves top-1 prediction accuracy of 42:51%, which is a considerable improvement over baselines that do not employ rich tabular context. Compared to a rule-based system, SpreadsheetCoder assists 82% more users in composing formulas on Google Sheets. View details
    Preview abstract Answering complex natural language questions on knowledge graphs (KGQA) is a challenging task. It requires reasoning with the input natural language questions as well as a massive, incomplete heterogeneous KG. Prior methods obtain an abstract structured query graph/tree from the input question and traverse the KG for answers following the query tree. However, they inherently cannot deal with missing links in the KG. Here we present LEGO, a Latent Execution-Guided reasOning framework to handle this challenge in KGQA. LEGO works in an iterative way, which alternates between (1) a Query Synthesizer, which synthesizes a reasoning action and grows the query tree step-by-step, and (2) a Latent Space Executor that executes the reasoning action in the latent embedding space to combat against the missing information in KG. To learn the synthesizer without step-wise supervision, we design a generic latent execution guided bottom-up search procedure to find good execution traces efficiently in the vast query space. Experimental results on several KGQA benchmarks demonstrate the effectiveness of our framework compared with previous state of the art. View details
    BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration
    Augustus Odena
    Rishabh Singh
    International Conference on Learning Representations (ICLR) (2021)
    Preview abstract Program synthesis is challenging largely because of the difficulty of search in a large space of programs. Human programmers routinely tackle the task of writing complex programs by writing sub-programs and then analyzing their intermediate results to compose them in appropriate ways. Motivated by this intuition, we present a new synthesis approach that leverages learning to guide a bottom-up search over programs. In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a given set of input-output examples. This is a powerful combination because of several emergent properties. First, in bottom-up search, intermediate programs can be executed, providing semantic information to the neural network. Second, given the concrete values from those executions, we can exploit rich features based on recent work on property signatures. Finally, bottom-up search allows the system substantial flexibility in what order to generate the solution, allowing the synthesizer to build up a program from multiple smaller sub-programs. Overall, our empirical evaluation finds that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches. We demonstrate the effectiveness of our technique on two datasets, one from the SyGuS competition and one of our own creation. View details
    Molecule Optimization by Explainable Evolution
    Binghong Chen
    Tianzhe Wang
    Chengtao Li
    Le Song
    ICLR 2021
    Preview abstract Optimizing molecules for desired properties is a fundamental yet challenging task in chemistry, material science, and drug discovery. This paper develops a novel algorithm for optimizing molecular properties via an Expectation-Maximization (EM) like explainable evolutionary process. The algorithm is designed to mimic human experts in the process of searching for desirable molecules and alternate between two stages: the first stage on explainable local search which identifies rationales, i.e., critical subgraph patterns accounting for desired molecular properties, and the second stage on molecule completion which explores the larger space of molecules containing good rationales. We test our approach against various baselines on a real-world multi-property optimization task where each method is given the same number of queries to the property oracle. We show that our evolution-by-explanation algorithm is 79% better than the best baseline in terms of a generic metric combining aspects such as success rate, novelty, and diversity. Human expert evaluation on optimized molecules shows that 60% of top molecules obtained from our methods are deemed successful. View details
    Hoppity: Learning Graph Transformations to Detect and Fix Bugs in Programs
    Elizabeth Dinella
    Ziyang Li
    Mayur Naik
    Le Song
    Ke Wang
    International Conference on Learning Representations (2020)
    Preview abstract We present a learning-based approach to detect and fix a broad range of bugs in Javascript programs. We frame the problem in terms of learning a sequence of graph transformations: given a buggy program modeled by a graph structure, our model makes a sequence of predictions including the position of bug nodes and corresponding graph edits to produce a fix. Unlike previous works built upon deep neural networks, our approach targets bugs that are more diverse and complex in nature (i.e. bugs that require adding or deleting statements to fix). We have realized our approach in a tool called HOPPITY. By training on 290,715 Javascript code change commits on Github, HOPPITY correctly detects and fixes bugs in 9,490 out of 36,361 programs in an end-to-end fashion. Given the bug location and type of the fix, HOPPITY also outperforms the baseline approach by a wide margin. View details
    Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration
    Rishabh Singh
    Advances in Neural Information Processing Systems (NeurIPS) (2020) (to appear)
    Preview abstract Discrete structures play an important role in applications like program language modeling, and software engineering. Current approaches to predicting complex structures typically consider autoregressive models for their tractability, with some sacrifice of the flexibility. Energy-based models (EBMs) on the other hand offer a more flexible and thus more powerful approach to modeling such distributions. Learning and inference with EBMs requires the partition function estimation which is intractable in general. For discrete structured data this is even more challenging due to the absence of gradients. In this paper we propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete, structured data, where parameter gradients are estimated using a learned sampler mimicking random local search, and thus, achieving a better trade-off between flexibility and tractability. We show that the sampler can still be trained efficiently using a bias reduction principle that alternates between importance reweighted maximum likelihood estimation and Gibbs sampling. Experimentally, we show that learning local search leads to significant improvements on two different domains in program synthesis and software engineering. Most notably, our energy model guided fuzzer for software testing can achieve comparable performance to well engineered fuzzing engines like libfuzzer on some targets. View details
    Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search
    Binghong Chen
    Chengtao Li
    Le Song
    International Conference on Machine Learning (2020)
    Preview abstract Retrosynthetic planning is a critical task in organic chemistry which identifies a series of reactions that can lead to the synthesis of a target product. The vast number of possible chemical transformations makes the size of the search space very big, and retrosynthetic planning is challenging even for experienced chemists. However, existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality. In this paper, we propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently. It maintains the search as an AND-OR tree, and learns a neural search bias with off-policy data. Then guided by this neural network, it performs best-first search efficiently during new planning episodes. Experiments on benchmark USPTO datasets show that, our proposed method outperforms existing state-of-the-art with respect to both the success rate and solution quality, while being more efficient at the same time. View details
    Learning to Stop While Learning to Predict
    Xinshi Chen
    Yu Li
    Xin Gao
    Le Song
    International Conference on Machine Learning (2020)
    Preview abstract There is a recent surge of interest in designing deep architectures based on the update steps in traditional algorithms, or learning neural networks to improve and replace traditional algorithms. While traditional algorithms have certain stopping criteria for outputting results at different iterations, many algorithm-inspired deep models are restricted to a fixed-depth for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances, either to avoid over-thinking, or because we want to compute less for operations converged already. In this paper, we tackle this varying depth problem using a steerable architecture, where a feed-forward deep model and a variational stopping policy are learned together to sequentially determine the optimal number of layers for each input instance. Training such architecture is very challenging. We provide a variational Bayes perspective and design a novel and effective training procedure which decomposes the task into an oracle model learning stage and an imitation stage. Experimentally, we show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks, including learning sparse recovery, few-shot meta learning, and computer vision tasks. View details
    Energy-Based Processes for Exchangeable Data
    Sherry Yang*
    International Conference on Machine Learning (2020)
    Preview abstract Recently there has been growing interest in modeling sets with exchangeability such as point clouds. A shortcoming of current approaches is that they restrict the cardinality of the sets considered or can only express limited forms of distribution over unobserved data. To overcome these limitations, we introduce Energy-Based Processes (EBPs), which extend energy based models to exchangeable data while allowing neural network parameterizations of the energy function. A key advantage of these models is the ability to express more flexible distributions over sets without restricting their cardinality. We develop an efficient training procedure for EBPs that demonstrates state-of-the-art performance on a variety of tasks such as point cloud generation, classification, denoising, and image completion. View details
    Preview abstract Learning graph generative models is a challenging task for deep learning and has wide applicability to a range of domains like chemistry, biology and social science. However current deep neural methods suffer from limited scalability: for a graph with n nodes and m edges, existing deep neural methods require Ω(n2) complexity by building up the adjacency matrix. On the other hand, many real world graphs are actually sparse in the sense that m≪n2. Based on this, we develop a novel autoregressive model, named BiGG, that utilizes this sparsity to avoid generating the full adjacency matrix, and importantly reduces the graph generation time complexity to O((n+m)log n). Furthermore, during training this autoregressive model can be parallelized with O(log n) synchronization stages, which makes it much more efficient than other autoregressive models that require Ω(n). Experiments on several benchmarks show that the proposed approach not only scales to orders of magnitude larger graphs than previously possible with deep autoregressive graph generative models, but also yields better graph generation quality. View details
    Differentiable Top-K Operator with Optimal Transport
    Yujia Xie
    Minshuo Chen
    Tuo Zhao
    Hongyuan Zha
    Wei Wei
    NeurIPS 2020
    Preview abstract Finding the k largest or smallest elements from a collection of scores, i.e., top-k operation, is an important model component widely used in information retrieval, machine learning, and data mining. However, if the top-k operation is implemented in an algorithmic way, e.g., using bubble algorithm, the resulted model cannot be trained in an end-to-end way using prevalent gradient descent algorithms. This is because these implementations typically involve swapping indices, whose gradient cannot be computed. Moreover, the corresponding mapping from the input scores to the indicator vector of whether this element belongs to the top-k set is essentially discontinuous. To address the issue, we propose a smoothed approximation, namely SOFT (Scalable Optimal transport-based diFferenTiable) top-k operator. Specifically, our SOFT top-k operator approximates the output of top-k operation as the solution of an Entropic Optimal Transport (EOT) problem. The gradient of the SOFT operator can then be efficiently approximated based on the optimality conditions of EOT problem. We then apply the proposed operator to k-nearest neighbors algorithm and beam search algorithm. The numerical experiment demonstrates their achieve improved performance. View details
    Code2Inv: A Deep Learning Framework for Program Verification
    Xujie Si
    Aaditya Naik
    Mayur Naik
    Le Song
    International Conference on Computer-Aided Verification (2020)
    Preview abstract We propose a general end-to-end deep learning framework Code2Inv, which takes a verification task and a proof checker as input, and automatically learns a valid proof for the verification task by interacting with the given checker. Code2Inv is parameterized with an embedding module and a grammar: the former encodes the verification task into numeric vectors while the latter describes the format of solutions Code2Inv should produce. We demonstrate the flexibility of Code2Inv by means of two small-scale yet expressive instances: a loop invariant synthesizer for C programs, and a Constrained Horn Clause (CHC) solver. View details
    Learning Transferable Graph Exploration
    Yujia Li
    Chenglong Wang
    Rishabh Singh
    Po-Sen Huang
    Neural Processing Information Systems (NeurIPS) (2019)
    Preview abstract This paper considers the problem of efficient exploration of unseen environments, a key challenge in AI. We propose a `learning to explore' framework where we learn a policy from a distribution of environments. At test time, presented with an unseen environment from the same distribution, the policy aims to generalize the exploration strategy to visit the maximum number of unique states in a limited number of steps. We particularly focus on environments with graph-structured state-spaces that are encountered in many important real-world applications like software testing and map building. We formulate this task as a reinforcement learning problem where the `exploration' agent is rewarded for transitioning to previously unseen environment states and employ a graph-structured memory to encode the agent's past trajectory. Experimental results demonstrate that our approach is extremely effective for exploration of spatial maps; and when applied on the challenging problems of coverage-guided software-testing of domain-specific programs and real-world mobile applications, it outperforms methods that have been hand-engineered by human experts. View details
    Preview abstract Retrosynthesis is one of the fundamental problems in organic chemistry. The task is to identify reactants that can be used to synthesize a specified product molecule. Recently, computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities. Most existing approaches rely on template-based models that define subgraph matching rules, but whether or not a chemical reaction can proceed is not defined by hard decision rules. In this work, we propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks that learns when rules from reaction templates should be applied, implicitly considering whether the resulting reaction would be both chemically feasible and strategic. We also propose an efficient hierarchical sampling to alleviate the computation cost. While achieving a significant improvement of 8.2% over current state-of-the-art methods on the benchmark dataset, our model also offers interpretations for the prediction. View details
    Preview abstract We present an efficient algorithm for maximum likelihood estimation (MLE) of the general exponential family, even in cases when the energy function is represented by a deep neural network. We consider the primal-dual view of the MLE for the kinectics augmented model, which naturally introduces an adversarial dual sampler. The sampler will be represented by a novel neural network architectures, dynamics embeddings, mimicking the dynamical-based samplers, e.g., Hamiltonian Monte-Carlo and its variants. The dynamics embedding parametrization inherits the flexibility from HMC, and provides tractable entropy estimation of the augmented model. Meanwhile, it couples the adversarial dual samplers with the primal model, reducing memory and sample complexity. We further show that several existing estimators, including contrastive divergence (Hinton, 2002), score matching (Hyvärinen, 2005), pseudo-likelihood (Besag, 1975), noise-contrastive estimation (Gutmann and Hyvärinen, 2010), non-local contrastive objectives (Vickrey et al., 2010), and minimum probability flow (Sohl-Dickstein et al., 2011), can be recast as the special cases of the proposed method with different prefixed dual samplers. Finally, we empirically demonstrate the superiority of the proposed estimator against existing state-of-the-art methods on synthetic and real-world benchmarks. View details
    No Results Found