Jump to Content
Ruoxi Sun

Ruoxi Sun

Ruoxi Sun completed Ph.D. in machine learning and computational neuroscience from Columbia University in 2019. She is generally interested in a broad aspect of machine learning topics: deep learning, language models, applied science and drug discoveries, computer vision, adversarial settings, representation learning, unsupervised learning, image/video understanding.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Text-to-SQL aims to automate the process of generating SQL queries on a database from natural language text. In this work, we propose "SQLPrompt", tailored to improve the few-shot prompting capabilities of Text-to-SQL for Large Language Models (LLMs). Our methods include innovative prompt design, execution based consistency decoding strategy which selects the SQL with the most consistent execution outcome among other SQL proposals, and a method that aims to improve performance by diversifying the SQL proposals during consistency selection with different prompt designs ("MixPrompt") and foundation models ("MixLLMs"). We show that SQLPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin, closing the gap with finetuning state-of the-art with thousands of labeled data. View details
    Preview abstract Accurate estimation of output quantiles is crucial in many use cases, where it is desired to model the range of possibility. Modeling target distribution at arbitrary quantile levels and at arbitrary input attribute levels are important to offer a comprehensive picture of the data, and requires the quantile function to be expressive enough. The quantile function describing the target distribution using quantile levels is critical for quantile regression. Althought various parametric forms for the distributions (that the quantile function specifies) can be adopted, an everlasting problem is selecting the most appropriate one that can properly approximate the data distributions. In this paper, we propose a non-parametric and data-driven approach, Neural Spline Search (NSS), to represent the observed data distribution without parametric assumptions. NSS is flexible and expressive for modeling data distributions by transforming the inputs with a series of monotonic spline regressions guided by symbolic operators. We demonstrate that NSS outperforms previous methods on synthetic, real-world regression and time-series forecasting tasks. View details
    Preview abstract A hallmark of modern large language models (LLMs) is their impressive general zero-shot and few-shot abilities, often elicited through in-context learning (ICL) via prompting. However, while highly coveted and being the most general, zero-shot performances in LLMs are still typically weaker due to the lack of guidance and the difficulty of applying existing automatic prompt design methods in general tasks when ground-truth labels are unavailable. In this study, we address this by presenting Universal Self-Adaptive Prompting (USP), an automatic prompt design approach specifically tailored for zero-shot learning (while compatible with few-shot). Requiring only a small amount of unlabeled data and an inference-only LLM, USP is highly versatile: to achieve universal prompting, USP categorizes a possible NLP task into one of the three possible task types and then uses a corresponding selector to select the most suitable queries and zero-shot model-generated responses as pseudo-demonstrations, thereby generalizing ICL to the zero-shot setup in a fully automated way. We evaluate USP with PaLM and PaLM 2 models and demonstrate performances that are considerably stronger than standard zero-shot baselines and often comparable to or even superior to few-shot baselines across more than 40 natural language understanding, natural language generation, and reasoning tasks. View details
    Preview abstract Modern large language models (LLMs) have demonstrated impressive capabilities at sophisticated tasks, often through step-by-step reasoning similar to humans. This is made possible by their strong few-shot and zero shot abilities: they either learn from a handful of handcrafted, completed responses (“in context examples”), or are prompted to reason spontaneously through specially designed triggers. Nonetheless, few-shot performance is sensitive to the choice of the examples, for which artisanal hand-crafted selection would require extensive effort, and in some cases, it might not even be possible to obtain relevant examples a-priori without expertise about the downstream tasks. On the other hand, most general and handcrafting-free, zero-shot performance is limited by the lack of guidance to the LLM. To address this, we propose Consistency-based Self-adaptive Prompting (COSP), a novel prompt design method for LLMs. Requiring neither handcrafted responses nor ground-truth labels, COSP selects & builds the set of examples from the LLM’s own zero-shot outputs via carefully designed criteria combining consistency, diversity and repetition. In zero-shot setting, with only LLM predictions, COSP significantly improves performance (up to 2× compared to zero-shot baselines and matching or exceeding few-shot baselines) in a range of reasoning tasks in 3 LLMs. Moreover, COSP can be generalized to few-shot setting and can take advantage of few labeled examples in an efficient way View details
    Preview abstract The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-ofthe-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging taskagnostic continual learning. Source code is available at https://github.com/google-research/l2p. View details
    Preview abstract Extracting informative representations of molecules using Graph neural networks (GNNs) is crucial in AI-driven drug discovery. Recently, the graph research community has been trying to replicate the success of self-supervised pretraining in natural language processing, with several successes claimed. However, we find the benefit brought by self-supervised pretraining on small molecular data can be negligible in many cases. We conduct thorough ablation studies on the key components of GNN pretraining, including pretraining objectives, data splitting methods, input features, pretraining dataset scales, and GNN architectures, to see how they affect the accuracy of the downstream tasks. Our first important finding is, self-supervised graph pretraining do not always have statistically significant advantages over non-pretraining methods in many settings. Secondly, although noticeable improvement can be observed with additional supervised pretraining, the improvement may diminish with richer features or more balanced data splits. Thirdly, hyper-parameters could have larger impacts on accuracy of downstream tasks than the choice of pretraining tasks, especially when the scales of downstream tasks are small. Finally, we provide our conjectures where the complexity of some pretraining methods on small molecules might be insufficient, followed by empirical evidences on different pretraining datasets. View details
    Preview abstract Continual learning aims to enable a single model to learn a sequence of tasks without catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store past pristine examples for experience replay, which, however, limits their practical value due to privacy and memory constraints. In this work, we present a simple yet effective framework, DualPrompt, which learns a tiny set of parameters, called prompts, to properly instruct a pre-trained model to learn tasks arriving sequentially without buffering past examples. DualPrompt presents a novel approach to attach complementary prompts to the pre-trained backbone, and then formulates the objective as learning task-invariant and task-specific "instructions". With extensive experimental validation, DualPrompt consistently sets state-of-the-art performance under the challenging class-incremental setting. In particular, DualPrompt outperforms recent advanced continual learning methods with relatively large buffer sizes. We also introduce a more challenging benchmark, Split ImageNet-R, to help generalize rehearsal-free continual learning research. Source code is available at https://github.com/google-research/l2p. View details
    Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
    Li Li
    Ryan Pederson
    Patrick Francis Riley
    Kieron Burke
    Phys. Rev. Lett., vol. 126 (2021), pp. 036401
    Preview abstract Including prior knowledge is important for effective machine learning models in physics and is usually achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations when training neural networks for the exchange-correlation functional provides an implicit regularization that greatly improves generalization. Two separations suffice for learning the entire one-dimensional H$_2$ dissociation curve within chemical accuracy, including the strongly correlated region. Our models also generalize to unseen types of molecules and overcome self-interaction error. View details
    Preview abstract Retrosynthesis is the process of identifying a set of reactants to synthesize a target molecule. It is critical to material design and drug discovery. Existing machine learning approaches based on language models and graph neural networks have achieved encouraging results. However, the inner connections of these models are rarely discussed, and rigorous evaluations of these models are largely in need. In this paper, we propose a framework that unifies sequence- and graph-based methods as energy-based models (EBMs) with different energy functions. This unified view establishes connections and reveals the differences between models, thereby enhances our understanding of model design. We also provide a comprehensive assessment of performance to the community. Additionally, we present a novel dual variant within the framework that performs consistent training to induce the agreement between forward- and backward-prediction. This model improves the state-of-the-art of template-free methods with or without reaction types. View details
    No Results Found