Benjamin Villalonga

Benjamin Villalonga

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain
    Trond Andersen
    Rhine Samajdar
    Andre Petukhov
    Jesse Hoke
    Dmitry Abanin
    ILYA Drozdov
    Xiao Mi
    Alexis Morvan
    Charles Neill
    Rajeev Acharya
    Richard Ross Allen
    Kyle Anderson
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Juan Campero
    Hung-Shen Chang
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Agustin Di Paolo
    Andrew Dunsworth
    Clint Earle
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    Gonzalo Garcia
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Alejo Grajales Dau
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Gordon Hill
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Salvatore Mandra
    Orion Martin
    Steven Martin
    Seneca Meeks
    Amanda Mieszala
    Shirin Montazeri
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Rebecca Potter
    Leonid Pryadko
    David Rhodes
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Vlad Sivak
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Doug Thor
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Vedika Khemani
    Sarang Gopalakrishnan
    Tomaž Prosen
    Science, 384(2024), pp. 48-53
    Preview abstract Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain’s center, P(M). The first two moments of P(M) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems. View details
    Stable quantum-correlated many-body states through engineered dissipation
    Xiao Mi
    Alexios Michailidis
    Sara Shabani
    Jerome Lloyd
    Rajeev Acharya
    Igor Aleiner
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Juan Atalaya
    Gina Bortoli
    Alexandre Bourassa
    Leon Brill
    Michael Broughton
    Bob Buckley
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Charina Chou
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Dripto Debroy
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Ebrahim Forati
    Brooks Foxen
    Élie Genois
    William Giang
    Dar Gilboa
    Raja Gosula
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Sean Harrington
    Paula Heu
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Cody Jones
    Pavol Juhas
    Kostyantyn Kechedzhi
    Marika Kieferova
    Alexei Kitaev
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Alexander Lill
    Wayne Liu
    Orion Martin
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Murray Ich Nguyen
    Tom O'Brien
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Charles Rocque
    Negar Saei
    Kannan Sankaragomathi
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Yaxing Zhang
    Ningfeng Zhu
    Jeremy Hilton
    Anthony Megrant
    Yu Chen
    Vadim Smelyanskiy
    Dmitry Abanin
    Science, 383(2024), pp. 1332-1337
    Preview abstract Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors. View details
    Purification-Based Quantum Error Mitigation of Pair-Correlated Electron Simulations
    Thomas E O'Brien
    Gian-Luca R. Anselmetti
    Fotios Gkritsis
    Vincent Elfving
    Stefano Polla
    William J. Huggins
    Oumarou Oumarou
    Kostyantyn Kechedzhi
    Dmitry Abanin
    Rajeev Acharya
    Igor Aleiner
    Richard Ross Allen
    Trond Ikdahl Andersen
    Kyle Anderson
    Markus Ansmann
    Frank Carlton Arute
    Kunal Arya
    Juan Atalaya
    Michael Blythe Broughton
    Bob Benjamin Buckley
    Alexandre Bourassa
    Leon Brill
    Tim Burger
    Nicholas Bushnell
    Jimmy Chen
    Yu Chen
    Benjamin Chiaro
    Desmond Chun Fung Chik
    Josh Godfrey Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Ilya Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Lara Faoro
    Edward Farhi
    Reza Fatemi
    Ebrahim Forati
    Brooks Riley Foxen
    William Giang
    Dar Gilboa
    Alejandro Grajales Dau
    Steve Habegger
    Michael C. Hamilton
    Sean Harrington
    Jeremy Patterson Hilton
    Trent Huang
    Ashley Anne Huff
    Sergei Isakov
    Justin Thomas Iveland
    Evan Jeffrey
    Cody Jones
    Pavol Juhas
    Dvir Kafri
    Julian Kelly
    Tanuj Khattar
    Mostafa Khezri
    Marika Kieferova
    Seon Kim
    Paul Victor Klimov
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily MeeKit Laws
    Joonho Lee
    Kenny Lee
    Brian Lester
    Alexander T. Lill
    Wayne Liu
    Aditya Locharla
    Erik Lucero
    Fionn Malone
    Orion Martin
    Jarrod Ryan McClean
    Trevor Johnathan Mccourt
    Matt McEwen
    Anthony Megrant
    Xiao Mi
    Kevin Miao
    Masoud Mohseni
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Ofer Naaman
    Matthew Neeley
    Charles Neill
    Ani Nersisyan
    Hartmut Neven
    Michael Newman
    Jiun How Ng
    Anthony Hieu Nguyen
    Murray Nguyen
    Murphy Yuezhen Niu
    Alex Opremcak
    Andre Gregory Petukhov
    Rebecca Potter
    Chris Quintana
    Pedram Roushan
    Daniel Sank
    Kannan Aryaperumal Sankaragomathi
    Kevin Satzinger
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Vladimir Shvarts
    Jindra Skruzny
    Vadim Smelyanskiy
    Clarke Smith
    Rolando Diego Somma
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Bryan W. K. Woo
    Ted White
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Robert Young
    Adam Jozef Zalcman
    Yaxing Zhang
    Ningfeng Zhu
    Nicholas Zobrist
    Christian Gogolin
    Ryan Babbush
    Nicholas Rubin
    Nature Physics(2023)
    Preview abstract An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations. View details
    Measurement-induced entanglement and teleportation on a noisy quantum processor
    Jesse Hoke
    Matteo Ippoliti
    Eliott Rosenberg
    Dmitry Abanin
    Rajeev Acharya
    Trond Andersen
    Markus Ansmann
    Frank Arute
    Kunal Arya
    Abe Asfaw
    Juan Atalaya
    Joe Bardin
    Andreas Bengtsson
    Gina Bortoli
    Alexandre Bourassa
    Jenna Bovaird
    Leon Brill
    Michael Broughton
    Bob Buckley
    David Buell
    Tim Burger
    Brian Burkett
    Nicholas Bushnell
    Jimmy Chen
    Benjamin Chiaro
    Desmond Chik
    Josh Cogan
    Roberto Collins
    Paul Conner
    William Courtney
    Alex Crook
    Ben Curtin
    Alejo Grajales Dau
    Dripto Debroy
    Alexander Del Toro Barba
    Sean Demura
    Agustin Di Paolo
    ILYA Drozdov
    Andrew Dunsworth
    Daniel Eppens
    Catherine Erickson
    Edward Farhi
    Reza Fatemi
    Vinicius Ferreira
    Leslie Flores
    Ebrahim Forati
    Austin Fowler
    Brooks Foxen
    William Giang
    Craig Gidney
    Dar Gilboa
    Marissa Giustina
    Raja Gosula
    Jonathan Gross
    Steve Habegger
    Michael Hamilton
    Monica Hansen
    Matt Harrigan
    Paula Heu
    Markus Hoffmann
    Sabrina Hong
    Trent Huang
    Ashley Huff
    Bill Huggins
    Sergei Isakov
    Justin Iveland
    Evan Jeffrey
    Zhang Jiang
    Cody Jones
    Pavol Juhas
    Dvir Kafri
    Kostyantyn Kechedzhi
    Tanuj Khattar
    Mostafa Khezri
    Marika Kieferova
    Seon Kim
    Alexei Kitaev
    Paul Klimov
    Andrey Klots
    Alexander Korotkov
    Fedor Kostritsa
    John Mark Kreikebaum
    Dave Landhuis
    Pavel Laptev
    Kim Ming Lau
    Lily Laws
    Joonho Lee
    Kenny Lee
    Yuri Lensky
    Brian Lester
    Alexander Lill
    Wayne Liu
    Aditya Locharla
    Orion Martin
    Jarrod McClean
    Matt McEwen
    Kevin Miao
    Amanda Mieszala
    Shirin Montazeri
    Alexis Morvan
    Ramis Movassagh
    Wojtek Mruczkiewicz
    Matthew Neeley
    Charles Neill
    Ani Nersisyan
    Michael Newman
    JiunHow Ng
    Anthony Nguyen
    Murray Ich Nguyen
    Murphy Niu
    Tom O'Brien
    Seun Omonije
    Alex Opremcak
    Andre Petukhov
    Rebecca Potter
    Leonid Pryadko
    Chris Quintana
    Charles Rocque
    Nicholas Rubin
    Negar Saei
    Daniel Sank
    Kannan Sankaragomathi
    Kevin Satzinger
    Henry Schurkus
    Christopher Schuster
    Mike Shearn
    Aaron Shorter
    Noah Shutty
    Vladimir Shvarts
    Jindra Skruzny
    Clarke Smith
    Rolando Somma
    George Sterling
    Doug Strain
    Marco Szalay
    Alfredo Torres
    Guifre Vidal
    Benjamin Villalonga
    Catherine Vollgraff Heidweiller
    Ted White
    Bryan Woo
    Cheng Xing
    Jamie Yao
    Ping Yeh
    Juhwan Yoo
    Grayson Young
    Adam Zalcman
    Yaxing Zhang
    Ningfeng Zhu
    Nicholas Zobrist
    Hartmut Neven
    Ryan Babbush
    Dave Bacon
    Sergio Boixo
    Jeremy Hilton
    Erik Lucero
    Anthony Megrant
    Julian Kelly
    Yu Chen
    Vadim Smelyanskiy
    Xiao Mi
    Vedika Khemani
    Pedram Roushan
    Nature, 622(2023), 481–486
    Preview abstract Measurement has a special role in quantum theory: by collapsing the wavefunction, it can enable phenomena such as teleportation and thereby alter the ‘arrow of time’ that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space–time that go beyond the established paradigms for characterizing phases, either in or out of equilibrium. For present-day noisy intermediate-scale quantum (NISQ) processors, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling to measurement-induced teleportation. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors. View details
    Noise-resilient Majorana Edge Modes on a Chain of Superconducting Qubits
    Abe Asfaw
    Adam Jozef Zalcman
    Aditya Locharla
    Alejandro Grajales Dau
    Alex Crook
    Alex Opremcak
    Alexa Rubinov
    Alexander Korotkov
    Alexandre Bourassa
    Alexei Kitaev
    Alexis Morvan
    Andre Gregory Petukhov
    Andreas Bengtsson
    Andrew Dunsworth
    Andrey Klots
    Anthony Megrant
    Ashley Anne Huff
    Austin Fowler
    Benjamin Chiaro
    Benjamin Villalonga
    Bernardo Meurer Costa
    Bob Benjamin Buckley
    Brian Burkett
    Brooks Foxen
    Catherine Erickson
    Catherine Vollgraff Heidweiller
    Charles Neill
    Chris Quintana
    Christopher Schuster
    Cody Jones
    Craig Michael Gidney
    Daniel Eppens
    Daniel Sank
    Dar Gilboa
    Dave Bacon
    Dave Landhuis
    David A Buell
    Dmitry Abanin
    Doug Strain
    Dripto M. Debroy
    Dvir Kafri
    Ebrahim Forati
    Edward Farhi
    Emily Mount
    Erik Lucero
    Evan Jeffrey
    Fedor Kostritsa
    Frank Carlton Arute
    Guifre Vidal
    Hartmut Neven
    Igor Aleiner
    Jamie Yao
    Jarrod Ryan McClean
    Jeremy Patterson Hilton
    Joao Basso
    Joe Bardin
    John Mark Kreikebaum
    Jonathan Arthur Gross
    Joonho Lee
    Juan Atalaya
    Juhwan Yoo
    Julian Kelly
    Justin Thomas Iveland
    Kannan Aryaperumal Sankaragomathi
    Kenny Lee
    Kevin Miao
    Kevin Satzinger
    Kim Ming Lau
    Kostyantyn Kechedzhi
    Kunal Arya
    Lara Faoro
    Leon Brill
    Leslie Flores
    Lev Ioffe
    Marco Szalay
    Marissa Giustina
    Markus Rudolf Hoffmann
    Masoud Mohseni
    Matt McEwen
    Matt P Harrigan
    Matthew Neeley
    Michael Blythe Broughton
    Michael Newman
    Michel Henri Devoret
    Mike Shearn
    Murphy Yuezhen Niu
    Nicholas Bushnell
    Nicholas Rubin
    Ofer Naaman
    Orion Martin
    Paul Conner
    Paul Victor Klimov
    Pavel Laptev
    Pedram Roushan
    Ping Yeh
    Rajeev Acharya
    Rebecca Potter
    Reza Fatemi
    Roberto Collins
    Ryan Babbush
    Sabrina Hong
    Sean Demura
    Seon Kim
    Sergei Isakov
    Sergio Boixo
    Shirin Montazeri
    Steve Habegger
    Tanuj Khattar
    Ted White
    Thomas E O'Brien
    Trent Huang
    Trond Ikdahl Andersen
    Vadim Smelyanskiy
    Vladimir Shvarts
    Wayne Liu
    William Courtney
    William Giang
    William J. Huggins
    Wojtek Mruczkiewicz
    Xiao Mi
    Yaxing Zhang
    Yu Chen
    Yuan Su
    Zhang Jiang
    Zijun Chen
    Science(2022) (to appear)
    Preview abstract Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the kicked Ising model which exhibits Majorana edge modes (MEMs) protected by a $\mathbb{Z}_2$-symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This finding allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Spectroscopic measurements further indicate exponentially suppressed hybridization between the MEMs over larger system sizes, which manifests as a strong resilience against low-frequency noise. Our work elucidates the noise sensitivity of symmetry-protected edge modes in a solid-state environment. View details
    Realizing topologically ordered states on a quantum processor
    Kevin Satzinger
    Y.-J. Liu
    A. Smith
    C. Knapp
    M. Newman
    N. C. Jones
    Z. Chen
    C. Quintana
    X. Mi
    A. Dunsworth
    C. Gidney
    I. Aleiner
    F. Arute
    K. Arya
    J. Atalaya
    R. Babbush
    J. C. Bardin
    R. Barends
    J. Basso
    A. Bengtsson
    A. Bilmes
    M. Broughton
    B. B. Buckley
    D. A. Buell
    B. Burkett
    N. Bushnell
    B. Chiaro
    R. Collins
    W. Courtney
    S. Demura
    A. R Derk
    D. Eppens
    C. Erickson
    L. Faoro
    E. Farhi
    B. Foxen
    M. Giustina
    A. Greene
    J. A. Gross
    M. P. Harrigan
    S. D. Harrington
    J. Hilton
    S. Hong
    T. Huang
    W. J. Huggins
    L. B. Ioffe
    S. V. Isakov
    E. Jeffrey
    Z. Jiang
    D. Kafri
    K. Kechedzhi
    T. Khattar
    S. Kim
    P. V. Klimov
    A. N. Korotkov
    F. Kostritsa
    D. Landhuis
    P. Laptev
    A. Locharla
    E. Lucero
    O. Martin
    J. R. McClean
    M. McEwen
    K. C. Miao
    M. Mohseni
    S. Montazeri
    W. Mruczkiewicz
    J. Mutus
    O. Naaman
    M. Neeley
    C. Neill
    M. Y. Niu
    T. E. O'Brien
    A. Opremcak
    B. Pato
    A. Petukhov
    N. C. Rubin
    D. Sank
    V. Shvarts
    D. Strain
    M. Szalay
    B. Villalonga
    T. C. White
    Z. Yao
    P. Yeh
    J. Yoo
    A. Zalcman
    H. Neven
    S. Boixo
    A. Megrant
    Y. Chen
    J. Kelly
    V. Smelyanskiy
    A. Kitaev
    M. Knap
    F. Pollmann
    Pedram Roushan
    Science, 374(2021), pp. 1237-1241
    Preview abstract The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the emblematic toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy of Stopo ≈ −0.95 × ln 2 and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results illustrate the topological nature of these states and demonstrate their potential for implementing the surface code. View details
    Exponential suppression of bit or phase flip errors with repetitive quantum error correction
    Adam Jozef Zalcman
    Alan Derk
    Alan Ho
    Alex Opremcak
    Alexander Korotkov
    Alexandre Bourassa
    Andre Gregory Petukhov
    Andreas Bengtsson
    Andrew Dunsworth
    Anthony Megrant
    Austin Fowler
    Bálint Pató
    Benjamin Chiaro
    Benjamin Villalonga
    Brian Burkett
    Brooks Riley Foxen
    Catherine Erickson
    Charles Neill
    Chris Quintana
    Cody Jones
    Craig Michael Gidney
    Daniel Eppens
    Daniel Sank
    Dave Landhuis
    David A Buell
    Doug Strain
    Dvir Kafri
    Edward Farhi
    Eric Ostby
    Erik Lucero
    Evan Jeffrey
    Fedor Kostritsa
    Frank Carlton Arute
    Hartmut Neven
    Igor Aleiner
    Jamie Yao
    Jarrod Ryan McClean
    Jeremy Patterson Hilton
    Jimmy Chen
    Jonathan Arthur Gross
    Joseph Bardin
    Josh Mutus
    Juan Atalaya
    Julian Kelly
    Kevin Miao
    Kevin Satzinger
    Kostyantyn Kechedzhi
    Kunal Arya
    Marco Szalay
    Marissa Giustina
    Masoud Mohseni
    Matt McEwen
    Matt Trevithick
    Matthew Neeley
    Matthew P Harrigan
    Michael Broughton
    Michael Newman
    Murphy Yuezhen Niu
    Nicholas Bushnell
    Nicholas Redd
    Nicholas Rubin
    Ofer Naaman
    Orion Martin
    Paul Victor Klimov
    Pavel Laptev
    Pedram Roushan
    Ping Yeh
    Rami Barends
    Roberto Collins
    Ryan Babbush
    Sabrina Hong
    Sean Demura
    Sean Harrington
    Seon Kim
    Sergei Isakov
    Sergio Boixo
    Ted White
    Thomas E O'Brien
    Trent Huang
    Trevor Mccourt
    Vadim Smelyanskiy
    Vladimir Shvarts
    William Courtney
    Wojtek Mruczkiewicz
    Xiao Mi
    Yu Chen
    Zhang Jiang
    Nature(2021)
    Preview abstract Realizing the potential of quantum computing will require achieving sufficiently low logical error rates. Many applications call for error rates below 10^-15, but state-of-the-art quantum platforms typically have physical error rates near 10^-3. Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits so that errors can be corrected. Logical errors are then exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold. QEC also requires that the errors are local, and that performance is maintained over many rounds of error correction, a major outstanding experimental challenge. Here, we implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors, reducing logical error per round by more than 100x when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analyzing error correlations with high precision, and characterize the locality of errors in a device performing QEC for the first time. Finally, we perform error detection using a small 2D surface code logical qubit on the same device, and show that the results from both 1D and 2D codes agree with numerical simulations using a simple depolarizing error model. These findings demonstrate that superconducting qubits are on a viable path towards fault tolerant quantum computing. View details
    Tuning Quantum Information Scrambling on a 53-Qubit Processor
    Adam Jozef Zalcman
    Alan Derk
    Alan Ho
    Alex Opremcak
    Alexander Korotkov
    Alexandre Bourassa
    Andre Gregory Petukhov
    Andreas Bengtsson
    Andrew Dunsworth
    Anthony Megrant
    Austin Fowler
    Bálint Pató
    Benjamin Chiaro
    Benjamin Villalonga
    Brian Burkett
    Brooks Riley Foxen
    Catherine Erickson
    Charles Neill
    Chris Quintana
    Cody Jones
    Craig Michael Gidney
    Daniel Eppens
    Daniel Sank
    Dave Landhuis
    David A Buell
    Doug Strain
    Dvir Kafri
    Edward Farhi
    Eric Ostby
    Erik Lucero
    Evan Jeffrey
    Fedor Kostritsa
    Frank Carlton Arute
    Hartmut Neven
    Igor Aleiner
    Jamie Yao
    Jarrod Ryan McClean
    Jeffrey Marshall
    Jeremy Patterson Hilton
    Jimmy Chen
    Jonathan Arthur Gross
    Joseph Bardin
    Josh Mutus
    Juan Atalaya
    Julian Kelly
    Kevin Miao
    Kevin Satzinger
    Kostyantyn Kechedzhi
    Kunal Arya
    Marco Szalay
    Marissa Giustina
    Masoud Mohseni
    Matt McEwen
    Matt Trevithick
    Matthew Neeley
    Matthew P Harrigan
    Michael Blythe Broughton
    Michael Newman
    Murphy Yuezhen Niu
    Nicholas Bushnell
    Nicholas Redd
    Nicholas Rubin
    Ofer Naaman
    Orion Martin
    Paul Victor Klimov
    Pavel Laptev
    Pedram Roushan
    Ping Yeh
    Rami Barends
    Roberto Collins
    Ryan Babbush
    Sabrina Hong
    Salvatore Mandra
    Sean Demura
    Sean Harrington
    Seon Kim
    Sergei Isakov
    Sergio Boixo
    Ted White
    Thomas E O'Brien
    Trent Huang
    Trevor Mccourt
    Vadim Smelyanskiy
    Vladimir Shvarts
    William Courtney
    Wojtek Mruczkiewicz
    Xiao Mi
    Yu Chen
    Zhang Jiang
    arXiv(2021)
    Preview abstract As entanglement in a quantum system grows, initially localized quantum information is spread into the exponentially many degrees of freedom of the entire system. This process, known as quantum scrambling, is computationally intensive to study classically and lies at the heart of several modern physics conundrums. Here, we characterize scrambling of different quantum circuits on a 53-qubit programmable quantum processor by measuring their out-of-time-order correlators (OTOCs). We observe that the spatiotemporal spread of OTOCs, as well as their circuit-to-circuit fluctuation, unravel in detail the time-scale and extent of quantum scrambling. Comparison with numerical results indicates a high OTOC measurement accuracy despite the large size of the quantum system. Our work establishes OTOC as an experimental tool to diagnose quantum scrambling at the threshold of being classically inaccessible. View details
    Accurately computing electronic properties of materials using eigenenergies
    Adam Jozef Zalcman
    Alan Derk
    Alan Ho
    Alex Opremcak
    Alexander Korotkov
    Andre Gregory Petukhov
    Andreas Bengtsson
    Andrew Dunsworth
    Anthony Megrant
    Austin Fowler
    Bálint Pató
    Benjamin Chiaro
    Benjamin Villalonga
    Bob Benjamin Buckley
    Brian Burkett
    Brooks Riley Foxen
    Catherine Erickson
    Charles Neill
    Chris Quintana
    Cody Jones
    Craig Michael Gidney
    Daniel Eppens
    Daniel Sank
    Dave Landhuis
    David A Buell
    Doug Strain
    Dvir Kafri
    Edward Farhi
    Eric Ostby
    Erik Lucero
    Evan Jeffrey
    Fedor Kostritsa
    Frank Carlton Arute
    Hartmut Neven
    Igor Aleiner
    Jamie Yao
    Jarrod Ryan McClean
    Jeremy Patterson Hilton
    Jimmy Chen
    Jonathan Arthur Gross
    Joseph Bardin
    Josh Mutus
    Juan Atalaya
    Juan Campero
    Julian Kelly
    Kevin Miao
    Kevin Satzinger
    Kostyantyn Kechedzhi
    Kunal Arya
    Lev Ioffe
    Marco Szalay
    Marissa Giustina
    Masoud Mohseni
    Matt Jacob-Mitos
    Matt McEwen
    Matt Trevithick
    Matthew Neeley
    Matthew P Harrigan
    Michael Blythe Broughton
    Michael Newman
    Murphy Yuezhen Niu
    Nicholas Bushnell
    Nicholas Redd
    Nicholas Rubin
    Ofer Naaman
    Orion Martin
    Paul Victor Klimov
    Pavel Laptev
    Pedram Roushan
    Ping Yeh
    Rami Barends
    Roberto Collins
    Ryan Babbush
    Sabrina Hong
    Sean Demura
    Sean Harrington
    Seon Kim
    Sergei Isakov
    Sergio Boixo
    Ted White
    Thomas E O'Brien
    Trent Huang
    Trevor Mccourt
    Vadim Smelyanskiy
    Vladimir Shvarts
    William Courtney
    William J. Huggins
    Wojtek Mruczkiewicz
    Xiao Mi
    Yu Chen
    Zhang Jiang
    arXiv preprint arXiv:2012.00921(2020)
    Preview abstract A promising approach to study quantum materials is to simulate them on an engineered quantum platform. However, achieving the accuracy needed to outperform classical methods has been an outstanding challenge. Here, using superconducting qubits, we provide an experimental blueprint for a programmable and accurate quantum matter simulator and demonstrate how to probe fundamental electronic properties. We illustrate the underlying method by reconstructing the single-particle band-structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors and arrive at an accuracy in measuring energy eigenvalues of this wire with an error of ~0.01 radians, whereas typical energy scales are of order 1 radian. Insight into this unprecedented algorithm fidelity is gained by highlighting robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 1e-4 radians. Furthermore, we synthesize magnetic flux and disordered local potentials, two key tenets of a condensed-matter system. When sweeping the magnetic flux, we observe avoided level crossings in the spectrum, a detailed fingerprint of the spatial distribution of local disorder. Combining these methods, we reconstruct electronic properties of the eigenstates where we observe persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation and paves the way to study novel quantum materials with superconducting qubits. View details