Ankit Singh Rawat

Ankit Singh Rawat

Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Supervision complexity and its role in knowledge distillation
    Hrayr Harutyunyan
    Aditya Krishna Menon
    International Conference on Learning Representations(2023) (to appear)
    Preview abstract Knowledge distillation is a popular method of compressing a large teacher model (or an ensemble of models) to a more compact student model. While empirically effective, there is limited understanding of why distillation helps, and how to improve it to transfer richer knowledge from the teacher to student. In this paper, we propose a new online distillation algorithm that applies distillation using a sequence of teacher models, corresponding to different checkpoints during teacher training. Intuitively, this gradually increases the complexity of the target functions that the student model is asked to mimic. Formally, we establish generalization bounds that explicate how the target label complexity can benefit the student. We empirically demonstrate that online distillation can significantly improve over regular offline distillation, particularly in scenarios where there is a large teacher-student capacity gap. View details
    Teacher Guided Training: An Efficient Framework for Knowledge Transfer
    Chong You
    Himanshu Jain
    Rob Fergus
    International Conference on Learning Representations(2023) (to appear)
    Preview abstract The remarkable performance gains realized by large pretrained models, e.g., GPT-3, hinge on the massive amounts of data they are exposed to during training. Analogously, distilling such large models to compact models for efficient deployment also necessitates a large amount of (labeled or unlabeled) training data. In this paper, we devise teacher-guided training (TGT) framework for training a high-quality compact model that leverages the knowledge acquired by pre-trained \emph{generative} models while obviating the need to go through a large volume of data. TGT exploits the fact that the teacher has acquired a good representation of the underlying data domain, which typically corresponds to a much lower dimensional manifold than the ambient space. Furthermore, we can use the teacher to explore the instance space more efficiently through sampling or gradient-based methods; thus, making TGT especially attractive for limited data or long-tail settings. We formally capture this benefit of proposed data-domain exploration in our generalization bounds. Among our empirical evaluations, we find that TGT can improve accuracy on ImageNet-LT by 10% compared to natural baseline and match accuracy on sentiment analysis on Amazon reviews without the need for pretraining. View details
    Serving Graph Compression for Graph Neural Networks
    Cho-Jui Hsieh
    International Conference on Learning Representations(2023) (to appear)
    Preview abstract Serving a GNN model in online applications is challenging --- one has to propagate the information from training nodes to testing nodes to achieve the best performance, while storing the whole training set (including training graph and node features) during inference time is prohibitive for most of the real world applications. We tackle this serving space compression problem in the paper, where the goal is to compress the storage requirement for GNN serving. Given a model to be served, the proposed method constructs a small set of virtual representative nodes to replace the original training nodes, so that users just need to replace the original training set by this virtual representative set to reduce the space requirement for serving, without the need of changing the actual GNN model and the forward pass. We carefully analyze the error in the forward pass and derive simple ways to construct the node features and graph of virtual representative nodes to minimize the approximation error. Experimental results demonstrate that the proposed method can significantly reduce the serving space requirement for GNN inference. View details
    Towards Understanding the Role of Attention in Prompt-tuning
    Christos Thrampoulidis
    Mahdi Soltanolkotabi
    Samet Oymak
    ICML 2023 (to appear)
    Preview abstract Prompt-tuning is an emerging strategy to adapt large language models (LLM) to downstream tasks by learning a (soft-)prompt parameter from data. Despite its success in LLMs, there is limited theoretical understanding of the power of prompt-tuning and the role of the attention mechanism in prompting. In this work, we explore prompt-tuning for one-layer attention architectures and study contextual mixture-models where each input token belongs to a context-relevant or -irrelevant set. We isolate the role of prompt-tuning through a self-contained prompt-attention model. Our contributions are as follows: (1) We show that softmax-prompt-attention is provably more expressive than softmax-self-attention and linear-prompt-attention under our contextual data model. (2) We analyze the initial trajectory of gradient descent and show that it learns the prompt and prediction head with near-optimal sample complexity and demonstrate how prompt can provably attend to sparse context-relevant tokens. (3) Assuming a known prompt but an unknown prediction head, we characterize the exact finite sample performance of prompt-attention which reveals the fundamental performance limits and the precise benefit of the context information. We also provide experiments that verify our theoretical insights on real datasets and demonstrate how prompt-tuning enables the model to attend to context-relevant information. View details
    Preview abstract Many modern high-performing machine learning models such as GPT-3 primarily rely on scaling up models, e.g., transformer networks. Simultaneously, a parallel line of work aims to improve the model performance by augmenting an input instance with other (labeled) instances during inference. Examples of such augmentations include task-specific prompts and similar examples retrieved from the training data by a nonparametric component. Remarkably, retrieval-based methods have enjoyed success on a wide range of problems, ranging from standard natural language processing and vision tasks to protein folding, as demonstrated by many recent efforts, including WebGPT and AlphaFold. Despite a growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored. In this paper, we present a formal treatment of retrieval-based models to characterize their generalization ability. In particular, we focus on two classes of retrieval-based classification approaches: First, we analyze a local learning framework that employs an explicit local empirical risk minimization based on retrieved examples for each input instance. Interestingly, we show that breaking down the underlying learning task into local sub-tasks enables the model to employ a low complexity parametric component to ensure good overall accuracy. The second class of retrieval-based approaches we explore learns a global model using kernel methods to directly map an input instance and retrieved examples to a prediction, without explicitly solving a local learning task. View details
    Preview abstract This paper reveals a curious observation that modern large-scale machine learning models with Transformer architectures have sparse activation maps. By activation map we refer to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU activation function, and by ``sparse'' we mean that on average very few entries (e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to MLP. Through extensive experiments we demonstrate that the emergence of sparsity is a prevalent phenomenon that occurs for both natural language processing and vision tasks, on both training and evaluation data, for Transformers of various configurations, at layers of all depth levels, etc. Moreover, larger Transformers with more layers and higher MLP hidden dimensions are sparser as measured by the percentage of nonzero entries. To probe why sparsity emerges, we design experiments with random labels, random images, and infinite data, and find that sparsity may be due primarily to optimization while has little to do with the properties of training dataset. We discuss how sparsity immediately implies a means for significantly reducing the FLOP count and improving efficiency for Transformers. Moreover, we demonstrate perhaps surprisingly that explicitly enforcing an even sparser activation via Top-K thresholding with a small value of k brings a collection of desired but missing properties for Transformers, namely less sensitivity to noisy training data, more robustness to input corruptions, and better calibration for their prediction confidence. View details
    Preview abstract Many practical settings allow a learner to defer predictions to one or more costly experts. For example, the learning to defer paradigm allows a learner to defer to a human expert, at some monetary cost. Similarly, the adaptive inference paradigm allows a base model to defer to one or more large models, at some computational cost. The goal in these settings is to learn classification and deferral mechanisms to optimise a suitable accuracy-cost tradeoff. To achieve this, a central issue studied in prior work is the design of a coherent loss function for both mechanisms. In this work, we demonstrate that existing losses have two subtle limitations: they can encourage underfitting when there is a high cost of deferring, and the deferral function can have a weak dependence on the base model predictions. To resolve these issues, we propose a post-hoc training scheme: we train a deferral function on top of a base model, with the objective of predicting to defer when the base model's error probability exceeds the cost of the expert model. This may be viewed as applying a partial surrogate to the ideal deferral loss, which can lead to a tighter approximation and thus better performance. Empirically, we verify the efficacy of post-hoc training on benchmarks for learning to defer and adaptive inference. View details
    A Fourier Approach to Mixture Learning
    Mingda Qiao
    Guru Prashanth Guruganesh
    Conference on Neural Information Processing Systems(2022) (to appear)
    Preview abstract We revisit the problem of learning mixtures of spherical Gaussians. Given samples from mixture $\frac{1}{k}\sum_{j=1}^{k}\N(\mu_j, I_d)$, the goal is to estimate the means $\mu_1, \mu_2, \ldots, \mu_k \in \R^d$ up to a small error. The hardness of this learning problem can be measured by the \emph{separation} $\Delta$ defined as the minimum distance between all pairs of means. Regev and Vijayaraghavan (2017) showed that with $\Delta = \Omega(\sqrt{\log k})$ separation, the means can be learned using $\poly(k, d)$ samples, whereas super-polynomially many samples are required if $\Delta = o(\sqrt{\log k})$ and $d = \Omega(\log k)$. This leaves open the low-dimensional regime where $d = o(\log k)$. In this work, we give an algorithm that efficiently learns the means in $d = O(\log k/\log\log k)$ dimensions under separation $d/\sqrt{\log k}$ (modulo doubly logarithmic factors). This separation is strictly smaller than $\sqrt{\log k}$, and is also shown to be necessary. Along with the results of Regev and Vijayaraghavan (2017), our work almost pins down the critical separation threshold at which efficient parameter learning becomes possible for spherical Gaussian mixtures. This was previously open even in one dimension. More generally, our algorithm runs in time $\poly(k)\cdot f(d, \Delta, \eps)$, and is thus fixed-parameter tractable in parameters $d$, $\Delta$ and $\eps$. Our approach is based on estimating the Fourier transform of the mixture at carefully chosen frequencies, and both the algorithm and its analysis are simple and elementary. Our positive results can be easily extended to learning mixtures of non-Gaussian distributions, under a mild condition on the Fourier spectrum of the distribution. View details
    Preview abstract Transformer-based models such as BERT have proven successful in information retrieval problem, which seek to identify relevant documents for a given query. There are two broad flavours of such models: cross-attention (CA) models, which learn a joint embedding for the query and document, and dual-encoder (DE) models, which learn separate embeddings for the query and document. Empirically, CA models are often found to be more accurate, which has motivated a series of works seeking to bridge this gap. However, a more fundamental question remains less explored: does this performance gap reflect an inherent limitation in the capacity of DE models, or a limitation in the training of such models? And does such an understanding suggest a principled means of improving DE models? In this paper, we study these questions, with three contributions. First, we establish theoretically that with a sufficiently large embedding dimension, DE models have the capacity to model a broad class of score distributions. Second, we show empirically that on real-world problems, DE models may overfit to spurious correlations in the training set, and thus under-perform on test samples. To mitigate this behaviour, we propose a novel distillation strategy that leverages confidence margins, and confirm its practical efficacy on the MSMARCO-Passage benchmark. View details
    Preview abstract Knowledge distillation is an approach to improve the performance of a student model by using the knowledge of a complex teacher. Despite its success in several deep learning applications, the study of distillation is mostly confined to classification settings. In particular, the use of distillation in top-k ranking settings, where the goal is to rank k most relevant items correctly, remains largely unexplored. In this paper, we study such ranking problems through the lens of distillation. We present a framework for distillation for top-k ranking and establish connections with the existing ranking methods. The core idea of this framework is to preserve the ranking at the top by matching the k largest scores of student and teacher while penalizing large scores for items ranked low by the teacher. Building on our framework, we develop a novel distillation approach, RankDistil, specifically catered towards ranking problems with a large number of items to rank. Finally, we conduct experiments which demonstrate that RankDistil yields benefits over commonly used baselines for ranking problems. View details