Sadeep Jayasumana

Sadeep Jayasumana

Sadeep Jayasumana is a Research Scientist at Google Research, New York. His research interests are in the areas of computer vision and deep learning. Prior to joining Google, Sadeep was a Postdoc at the University of Oxford, working with Prof. Phil Torr. Sadeep obtained his PhD at the Australian National University, where he was advised by Prof. Richard Hartley.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract As with many machine learning problems, the progress of image generation methods hinges on good evaluation metrics. One of the most popular is the Frechet Inception Distance (FID). FID estimates the distance between a distribution of Inception-v3 features of real images, and those of images generated by the algorithm. We highlight important drawbacks of FID: Inception's poor representation of the rich and varied content generated by modern text-to-image models, incorrect normality assumptions, and poor sample complexity. We call for a reevaluation of FID's use as the primary quality metric for generated images. We empirically demonstrate that FID contradicts human raters, it does not reflect gradual improvement of iterative text-to-image models, it does not capture distortion levels, and that it produces inconsistent results when varying the sample size. We also propose an alternative new metric, CMMD, based on richer CLIP embeddings and the maximum mean discrepancy distance with the Gaussian RBF kernel. It is an unbiased estimator that does not make any assumptions on the probability distribution of the embeddings and is sample efficient. Through extensive experiments and analysis, we demonstrate that FID-based evaluations of text-to-image models may be unreliable, and that CMMD offers a more robust and reliable assessment of image quality. View details
    Preview abstract Modern text-to-image generation models produce high-quality images that are both photorealistic and faithful to the text prompts. However, this quality comes at significant computational cost: nearly all of these models are iterative and require running sampling multiple times with large models. This iterative process is needed to ensure that different regions of the image are not only aligned with the text prompt, but also compatible with each other. In this work, we propose a light-weight approach to achieving this compatibility between different regions of an image, using a Markov Random Field (MRF) model. We demonstrate the effectiveness of this method on top of the latent token-based Muse text-to-image model. The MRF richly encodes the compatibility among image tokens at different spatial locations to improve quality and significantly reduce the required number of Muse sampling steps. Inference with the MRF is significantly cheaper, and its parameters can be quickly learned through back-propagation by modeling MRF inference as a differentiable neural-network layer. Our full model, MarkovGen, uses this proposed MRF model to both speed up Muse by 1.5X and produce higher quality images by decreasing undesirable image artifacts. View details
    Preview abstract Transformer-based models such as BERT have proven successful in information retrieval problem, which seek to identify relevant documents for a given query. There are two broad flavours of such models: cross-attention (CA) models, which learn a joint embedding for the query and document, and dual-encoder (DE) models, which learn separate embeddings for the query and document. Empirically, CA models are often found to be more accurate, which has motivated a series of works seeking to bridge this gap. However, a more fundamental question remains less explored: does this performance gap reflect an inherent limitation in the capacity of DE models, or a limitation in the training of such models? And does such an understanding suggest a principled means of improving DE models? In this paper, we study these questions, with three contributions. First, we establish theoretically that with a sufficiently large embedding dimension, DE models have the capacity to model a broad class of score distributions. Second, we show empirically that on real-world problems, DE models may overfit to spurious correlations in the training set, and thus under-perform on test samples. To mitigate this behaviour, we propose a novel distillation strategy that leverages confidence margins, and confirm its practical efficacy on the MSMARCO-Passage benchmark. View details
    Preview abstract Negative sampling is a widely adopted technique to enable efficient training in settings with a large number of classes. Typically, negative sampling approaches aim at approximating the value or gradient of the computationally expensive loss function that takes all the negative labels into account. In this work, we study the connection between negative sampling approaches and loss modification techniques for countering label imbalance. We show that different (bias) correction strategies that accompany negative sampling approaches can have unintended consequences on the model's performance on various data sub-populations. We then propose a unified approach to tackle both sampling bias, arising from working with a subset of all negative classes, and labeling bias, which is inherently present in the data due to label-imbalance. Finally, we verify our analysis and demonstrate the utility of our unified approach through empirical evaluation on standard image classification and retrieval benchmarks. View details
    Long-tail learning via logit adjustment
    Aditya Krishna Menon
    Himanshu Jain
    International Conference on Learning Representations (ICLR) 2021
    Preview abstract Real-world classification problems typically exhibit an imbalanced or long-tailed label distribution, wherein many labels are associated with only a few samples. This poses a challenge for generalisation on such labels, and also makes naive learning biased towards dominant labels. In this paper, we present two simple modifications of standard softmax cross-entropy training to cope with these challenges. Our techniques involve logit adjustment based on the label priors, either applied post-hoc to a trained model, or enforced in the loss during training. Such adjustment encourages a high relative margin between logits of rare versus dominant labels. Our techniques unify and generalise several recent proposals in the literature, while possessing stronger theoretical guarantees and empirical performance. View details
    Bipartite Conditional Random Fields for Panoptic Segmentation
    Kanchana Ranasinghe
    Mayuka Jayawardhana
    Sahan Liyanaarachchi
    Harsha Ranasinghe
    Sina Samangooei
    British Machine Vision Conference (BMVC)(2020)
    Preview abstract We tackle the panoptic segmentation problem with a conditional random field (CRF) model. Panoptic segmentation involves assigning a semantic label and an instance label to each pixel of a given image. At each pixel, the semantic label and the instance label should be compatible. Furthermore, a good panoptic segmentation should have a number of other desirable properties such as the spatial and color consistency of the labeling (similar looking neighboring pixels should have the same semantic label and the instance label). To tackle this problem, we propose a CRF model, named Bipartite CRF or BCRF, with two types of random variables for semantic and instance labels. In this formulation, various energies are defined within and across the two types of random variables to encourage a consistent panoptic segmentation. We propose a mean-field-based efficient inference algorithm for solving the CRF and empirically show its convergence properties. This algorithm is fully differentiable, and therefore, BCRF inference can be included as a trainable module in any deep network. In the experimental evaluation, we quantitatively and qualitatively show that the BCRF yields superior panoptic segmentation results in practice. View details
    No Results Found