Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10133 publications
    Preview abstract Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these challenging ranking formulations. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL 2019&2020, PRP based on the Flan-UL2 model with 20B parameters performs favorably with the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, while outperforming other LLM-based solutions, such as InstructGPT which has 175B parameters, by over 10% for all ranking metrics. By using the same prompt template on seven BEIR tasks, PRP outperforms supervised baselines and outperforms the blackbox commercial ChatGPT solution by 4.2% and pointwise LLM-based solutions by more than 10% on average NDCG@10. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. View details
    Preview abstract Inter-sentence pauses are the silences that occur between sentences in a paragraph or a dialogue. They are an important aspect of long-form speech prosody, as they can affect the naturalness, intelligibility, and effectiveness of communication. However, the user perception of inter-sentence pauses in long-form speech synthesis is not well understood. Previous work often evaluates pause modelling in conjunction with other prosodic features making it hard to explicitly study how raters perceive differences in inter-sentence pause lengths. In this paper, using multiple text-to-speech (TTS) datasets that cover different content types, domains, and settings, we investigate how sensitive raters are to changes to the durations of inter-sentence pauses in long-form speech by comparing ground truth audio samples with renditions that have manipulated pause durations. This experimental design is meant to allow us to draw conclusions regarding the utility that can be expected from similar evaluations when applied to synthesized long-form speech. We find that, using standard evaluation methodologies, raters are not sensitive to variations in pause lengths unless these deviate exceedingly from the norms or expectations of the speech context. View details
    DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
    Yair Schiff
    Jeff Parker
    Volodymyr Kuleshov
    International Conference on Machine Learning (ICML) (2024)
    Preview abstract Learning dynamics from dissipative chaotic systems is notoriously difficult due to their inherent instability, as formalized by their positive Lyapunov exponents, which exponentially amplify errors in the learned dynamics. However, many of these systems exhibit ergodicity and an attractor: a compact and highly complex manifold, to which trajectories converge in finite-time, that supports an invariant measure, i.e., a probability distribution that is invariant under the action of the dynamics, which dictates the long-term statistical behavior of the system. In this work, we leverage this structure to propose a new framework that targets learning the invariant measure as well as the dynamics, in contrast with typical methods that only target the misfit between trajectories, which often leads to divergence as the trajectories’ length increases. We use our framework to propose a tractable and sample efficient objective that can be used with any existing learning objectives. Our Dynamics Stable Learning by Invariant Measure (DySLIM) objective enables model training that achieves better point-wise tracking and long-term statistical accuracy relative to other learning objectives. By targeting the distribution with a scalable regularization term, we hope that this approach can be extended to more complex systems exhibiting slowly-variant distributions, such as weather and climate models. Code to reproduce our experiments is available here: https://github.com/google-research/swirl-dynamics/tree/main/swirl_dynamics/projects/ergodic. View details
    With Great Power Comes Great Responsibility: Security and Privacy Issues of Modern Browser APIs
    Harun Oz
    Daniele Cono D’Elia
    Abbas Acar
    Riccardo Lazzeretti
    Selcuk Uluagac
    IEEE Security and Privacy (2024)
    Preview abstract This paper discusses security and privacy issues in modern Browser APIs by categorizing them based on their functionality. With this study, we aim to alert the community about these issues and motivate further research into analyzing the security and privacy concerns within modern Browser APIs. View details
    ASTRA-5G: Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices
    Aanjhan Ranganathan
    Christina Pöpper
    Evangelos Bitsikas
    Michele Guerra
    Roger Piqueras Jover
    Syed Khandker
    WiSec '24: Proceedings of the 17th ACM Conference on Security and Privacy in Wireless and Mobile Networks, ACM (2024)
    Preview abstract Despite the widespread deployment of 5G technologies, there exists a critical gap in security testing for 5G Standalone (SA) devices. Existing methods, largely manual and labor-intensive, are ill-equipped to fully uncover the state of security in the implementations of 5G-SA protocols and standards on devices, severely limiting the ability to conduct comprehensive evaluations. To address this issue, in this work, we introduce an novel, open-source framework that auto- mates the security testing process for 5G SA devices. By leveraging enhanced functionalities of 5G SA core and Radio Access Network (RAN) software, our framework offers a streamlined approach to generating, executing, and evaluating test cases, specifically focusing on the Non-Access Stratum (NAS) layer. Our application of this framework across multiple 5G SA devices provides in-depth security insights, significantly improving testing efficiency and breadth. View details
    PROMPT: A Fast and Extensible Memory Profiling Framework
    Ziyang Xu
    Yebin Chon
    Yian Su
    Zujun Tan
    Simone Campanoni
    David I. August
    Proceedings of the ACM on Programming Languages, 8, Issue OOPSLA (2024)
    Preview abstract Memory profiling captures programs' dynamic memory behavior, assisting programmers in debugging, tuning, and enabling advanced compiler optimizations like speculation-based automatic parallelization. As each use case demands its unique program trace summary, various memory profiler types have been developed. Yet, designing practical memory profilers often requires extensive compiler expertise, adeptness in program optimization, and significant implementation effort. This often results in a void where aspirations for fast and robust profilers remain unfulfilled. To bridge this gap, this paper presents PROMPT, a framework for streamlined development of fast memory profilers. With PROMPT, developers need only specify profiling events and define the core profiling logic, bypassing the complexities of custom instrumentation and intricate memory profiling components and optimizations. Two state-of-the-art memory profilers were ported with PROMPT where all features preserved. By focusing on the core profiling logic, the code was reduced by more than 65% and the profiling overhead was improved by 5.3× and 7.1× respectively. To further underscore PROMPT's impact, a tailored memory profiling workflow was constructed for a sophisticated compiler optimization client. In 570 lines of code, this redesigned workflow satisfies the client’s memory profiling needs while achieving more than 90% reduction in profiling overhead and improved robustness compared to the original profilers. View details
    Found in the middle: Calibrating Positional Attention Bias Improves Long Context Utilization
    Cheng-Yu Hsieh
    Yung-Sung Chuang
    Chun-Liang Li
    Abhishek Kumar
    James Glass
    Alexander Ratner
    Ranjay Krishna
    Preview abstract Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input. This phenomenon has been known as the lost-in-the-middle problem. In this work, we make three contributions. First, we set out to understand the factors that cause this phenomenon. In doing so, we establish a connection between lost-in-the-middle to LLMs' intrinsic attention bias: LLMs exhibit a U-shaped attention bias where the tokens at the beginning and at the end of its input receive higher attention, regardless of their relevance. Second, we mitigate this positional bias through a calibration mechanism, found-in-the-middle, that allows the model to attend to contexts faithfully according to their relevance, even though when they are in the middle. Third, we show found-in-the-middle not only achieves better performance in locating relevant information within a long context, but also eventually leads to improved retrieval-augmented generation (RAG) performance across various tasks, outperforming existing methods by up to 15 percentage points. These findings open up future directions in understanding LLM attention bias and its potential consequences. View details
    Preview abstract We present an approach to modeling an image-space prior on scene motion. Our prior is learned from a collection of motion trajectories extracted from real video sequences depicting natural, oscillatory dynamics such as trees, flowers, candles, and clothes swaying in the wind. We model this dense, long-term motion prior in the Fourier domain:given a single image, our trained model uses a frequency-coordinated diffusion sampling process to predict a spectral volume, which can be converted into a motion texture that spans an entire video. Along with an image-based rendering module, these trajectories can be used for a number of downstream applications, such as turning still images into seamlessly looping videos, or allowing users to realistically interact with objects in real pictures by interpreting the spectral volumes as image-space modal bases, which approximate object dynamics. View details
    Preview abstract As instruction-tuned large language models (LLMs) gain global adoption, their ability to follow instructions in multiple languages becomes increasingly crucial. In this work, we investigate how multilinguality during instruction tuning of a multilingual LLM affects instruction-following across languages from the pre-training corpus. We first show that many languages transfer some instruction-following capabilities to other languages from even monolingual tuning. Furthermore, we find that only 40 multilingual examples integrated in an English tuning set substantially improve multilingual instruction-following, both in seen and unseen languages during tuning. In general, we observe that models tuned on multilingual mixtures exhibit comparable or superior performance in multiple languages compared to monolingually tuned models, despite training on 10x fewer examples in those languages. Finally, we find that diversifying the instruction tuning set with even just 2-4 languages significantly improves cross-lingual generalization. Our results suggest that building massively multilingual instruction-tuned models can be done with only a very small set of multilingual instruction-responses. View details
    Preview abstract This paper presents NOMAD (Non-Matching Audio Distance), a differentiable perceptual similarity metric that measures the distance of a degraded signal against non-matching references. The proposed method is based on learning deep feature embeddings via a triplet loss guided by the Neurogram Similarity Index Measure (NSIM) to capture degradation intensity. During inference, the similarity score between any two audio samples is computed through Euclidean distance of their embeddings. NOMAD is fully unsupervised and can be used in general perceptual audio tasks for audio analysis e.g. quality assessment and generative tasks such as speech enhancement and speech synthesis. The proposed method is evaluated with 3 tasks. Ranking degradation intensity, predicting speech quality, and as a loss function for speech enhancement. Results indicate NOMAD outperforms other non-matching reference approaches in both ranking degradation intensity and quality assessment, exhibiting competitive performance with full-reference audio metrics. NOMAD demonstrates a promising technique that mimics human capabilities in assessing audio quality with non-matching references to learn perceptual embeddings without the need for human-generated labels. View details
    General Identifiability and Achievability for Causal Representation Learning
    Burak Varici
    Emre Acarturk
    Ali Tajer
    AISTATS 2024 (Oral), Oral Talk at NeurIPS Causal Representation Learning Workshop 2023. (2024)
    Preview abstract This paper focuses on causal representation learning (CRL) under a general nonparametric latent causal model and a general transformation model that maps the latent data to the observational data. It establishes identifiability and achievability results using two hard uncoupled interventions per node in the latent causal graph. Notably, one does not know which pair of intervention environments have the same node intervened (hence, uncoupled). For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions. For achievability, an algorithm is designed that uses observational and interventional data and recovers the latent causal model and variables with provable guarantees. This algorithm leverages score variations across different environments to estimate the inverse of the transformer and, subsequently, the latent variables. The analysis, additionally, recovers the identifiability result for two hard coupled interventions, that is when metadata about the pair of environments that have the same node intervened is known. This paper also shows that when observational data is available, additional faithfulness assumptions that are adopted by the existing literature are unnecessary View details
    Learning Thresholds with Latent Value and Censored Feedback
    Jiahao Zhang
    Tao Lin
    Weiqiang Zheng
    Xiaotie Deng
    ICLR (2024)
    Preview abstract In this paper, we investigate a problem of \emph{actively} learning threshold in latent space, where the \emph{unknown} reward $g(\gamma, v)$ depends on the proposed threshold $\gamma$ and latent value $v$ and it can be \emph{only} achieved if the threshold is lower than or equal to the \emph{unknown} latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most $\eps$ smaller than the optimum and prove that the number of queries needed can be infinitely large even when $g(\gamma, v)$ is monotone with respect to both $\gamma$ and $v$. On the positive side, we provide a tight query complexity $\Tilde{\Theta}(1/\eps^3)$ when $g$ is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight $\Tilde{\Theta}(1/\eps^3)$ query complexity can be achieved as long as $g$ satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight $\Theta(T^{2/3})$ regret bound using continuous-arm bandit techniques and the aforementioned query complexity results. View details
    Preview abstract Prompting and in-context learning (ICL) have become efficient learning paradigms for large language models (LLMs). However, LLMs suffer from prompt brittleness and various bias factors in the prompt, including but not limited to the formatting, the choice verbalizers, and the ICL examples. To address this problem that results in unexpected performance degradation, calibration methods have been developed to mitigate the effects of these biases while recovering LLM performance. In this work, we first conduct a systematic analysis of the existing calibration methods, where we both provide a unified view and reveal the failure cases. Inspired by these analyses, we propose Batch Calibration (BC), a simple yet intuitive method that controls the contextual bias from the batched input, unifies various prior approaches, and effectively addresses the aforementioned issues. BC is zero-shot, inference-only, and incurs negligible additional costs. In the few-shot setup, we further extend BC to allow it to learn the contextual bias from labeled data. We validate the effectiveness of BC with PaLM 2-(S, M, L) and CLIP models and demonstrate state-of-the-art performance over previous calibration baselines across more than 10 natural language understanding and image classification tasks. View details
    First Passage Percolation with Queried Hints
    Kritkorn Karntikoon
    Aaron Schild
    Yiheng Shen
    Ali Sinop
    AISTATS (2024)
    Preview abstract Optimization problems are ubiquitous throughout the modern world. In many of these applications, the input is inherently noisy and it is expensive to probe all of the noise in the input before solving the relevant optimization problem. In this work, we study how much of that noise needs to be queried in order to obtain an approximately optimal solution to the relevant problem. We focus on the shortest path problem in graphs, where one may think of the noise as coming from real-time traffic. We consider the following model: start with a weighted base graph $G$ and multiply each edge weight by an independently chosen, uniformly random number in $[1,2]$ to obtain a random graph $G'$. This model is called \emph{first passage percolation}. Mathematicians have studied this model extensively when $G$ is a $d$-dimensional grid graph, but the behavior of shortest paths in this model is still poorly understood in general graphs. We make progress in this direction for a class of graphs that resembles real-world road networks. Specifically, we prove that if the geometric realization of $G$ has constant doubling dimension, then for a given $s-t$ pair, we only need to probe the weights on $((\log n) / \epsilon)^{O(1)}$ edges in $G'$ in order to obtain a $(1 + \epsilon)$-approximation to the $s-t$ distance in $G'$. We also demonstrate experimentally that this result is pessimistic -- one can even obtain a short path in $G'$ with a small number of probes to $G'$. View details
    Knowledge Distillation with Perturbed Loss: From a Vanilla Teacher to a Proxy Teacher
    Rongzhi Zhang
    Chao Zhang
    Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024), ACM, pp. 4278 - 4289
    Preview abstract Knowledge distillation is a popular technique to transfer knowledge from a large teacher model to a small student model. Typically, the student learns to imitate the teacher by minimizing the KL divergence of its output distribution with the teacher's output distribution. In this work, we argue that such a learning objective is sub-optimal because there exists a discrepancy between the teacher's output distribution and the ground truth label distribution. Therefore, forcing the student to blindly imitate the unreliable teacher output distribution leads to inferior performance. To this end, we propose a novel knowledge distillation objective PTLoss by first representing the vanilla KL-based distillation loss function via a Maclaurin series and then perturbing the leading-order terms in this series. This perturbed loss implicitly transforms the original teacher into a proxy teacher with a distribution closer to the ground truth distribution. We establish the theoretical connection between this "distribution closeness'' and the student model generalizability, which enables us to select the PTLoss's perturbation coefficients in a principled way. Extensive experiments on six public benchmark datasets demonstrate the effectiveness of PTLoss with teachers of different scales. View details