Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10132 publications
    Preview abstract Graphs are a powerful tool for representing and analyzing complex relationships in real-world applications such as social networks, recommender systems, and computational finance. Reasoning on graphs is essential for drawing inferences about the relationships between entities in a complex system, and to identify hidden patterns and trends. Despite the remarkable progress in automated reasoning with natural text, reasoning on graphs with large language models (LLMs) remains an understudied problem. In this work, we perform the first comprehensive study of encoding graph-structured data as text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered. These novel results provide valuable insight on strategies for encoding graphs as text. Using these insights we illustrate how the correct choice of encoders can boost performance on graph reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task. View details
    Optimizing quantum gates towards the scale of logical qubits
    Alexandre Bourassa
    Andrew Dunsworth
    Will Livingston
    Vlad Sivak
    Trond Andersen
    Yaxing Zhang
    Desmond Chik
    Jimmy Chen
    Charles Neill
    Alejo Grajales Dau
    Anthony Megrant
    Alexander Korotkov
    Vadim Smelyanskiy
    Yu Chen
    Nature Communications, 15 (2024), pp. 2442
    Preview abstract A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ~3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to a variety of quantum operations, algorithms, and computing architectures. View details
    Preview abstract We present XDTK, an open-source Unity/Android toolkit for prototyping multi-device interactions in extended reality (XR). With the Unity package and Android app provided in XDTK, data from any number of devices (phones, tablets, or wearables) can be streamed to and surfaced within a Unity-based XR application. ARCore-supported device also provide self-tracked pose data. Devices on the same local network are automatically discovered by the Unity server and their inputs are routed using a custom event framework. We designed XDTK to be modular and easily extendable to enable fast, simple, and effective prototyping of multi-device experiences by both researchers and developers. View details
    The effect of uncertainty in humidity and model parameters on the prediction of contrail energy forcing
    Marc Shapiro
    Zebediah Engberg
    Tharun Sankar
    Marc E.J. Stettler
    Roger Teoh
    Ulrich Schumann
    Susanne Rohs
    Erica Brand
    Environmental Research Communications, 6 (2024), pp. 095015
    Preview abstract Previous work has shown that while the net effect of aircraft condensation trails (contrails) on the climate is warming, the exact magnitude of the energy forcing per meter of contrail remains uncertain. In this paper, we explore the skill of a Lagrangian contrail model (CoCiP) in identifying flight segments with high contrail energy forcing. We find that skill is greater than climatological predictions alone, even accounting for uncertainty in weather fields and model parameters. We estimate the uncertainty due to humidity by using the ensemble ERA5 weather reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) as Monte Carlo inputs to CoCiP. We unbias and correct under-dispersion on the ERA5 humidity data by forcing a match to the distribution of in situ humidity measurements taken at cruising altitude. We take CoCiP energy forcing estimates calculated using one of the ensemble members as a proxy for ground truth, and report the skill of CoCiP in identifying segments with large positive proxy energy forcing. We further estimate the uncertainty due to model parameters in CoCiP by performing Monte Carlo simulations with CoCiP model parameters drawn from uncertainty distributions consistent with the literature. When CoCiP outputs are averaged over seasons to form climatological predictions, the skill in predicting the proxy is 44%, while the skill of per-flight CoCiP outputs is 84%. If these results carry over to the true (unknown) contrail EF, they indicate that per-flight energy forcing predictions can reduce the number of potential contrail avoidance route adjustments by 2x, hence reducing both the cost and fuel impact of contrail avoidance. View details
    ConSmax: Hardware-Friendly Alternative Softmax with Learnable Parameters
    Shiwei Liu
    Guanchen Tao
    Yifei Zou
    Derek Chow
    Zichen Fan
    Kauna Lei
    Bangfei Pan
    Dennis Sylvester
    Mehdi Saligane
    Arxiv (2024)
    Preview abstract The self-attention mechanism sets transformer-based large language model (LLM) apart from the convolutional and recurrent neural networks. Despite the performance improvement, achieving real-time LLM inference on silicon is challenging due to the extensively used Softmax in self-attention. Apart from the non-linearity, the low arithmetic intensity greatly reduces the processing parallelism, which becomes the bottleneck especially when dealing with a longer context. To address this challenge, we propose Constant Softmax (ConSmax), a software-hardware co-design as an efficient Softmax alternative. ConSmax employs differentiable normalization parameters to remove the maximum searching and denominator summation in Softmax. It allows for massive parallelization while performing the critical tasks of Softmax. In addition, a scalable ConSmax hardware utilizing a bitwidth-split look-up table (LUT) can produce lossless non-linear operation and support mix-precision computing. It further facilitates efficient LLM inference. Experimental results show that ConSmax achieves a minuscule power consumption of 0.2 mW and area of 0.0008 mm^2 at 1250-MHz working frequency and 16-nm CMOS technology. Compared to state-of-the-art Softmax hardware, ConSmax results in 3.35x power and 2.75x area savings with a comparable accuracy on a GPT-2 model and the WikiText103 dataset. View details
    Preview abstract New regulations and increased awareness of data privacy have led to the deployment of new and more efficient differentially private mechanisms across public institutions and industries. Ensuring the correctness of these mechanisms is therefore crucial to ensure the proper protection of data. However, since differential privacy is a property of the mechanism itself, and not of an individual output, testing whether a mechanism is differentially private is not a trivial task. While ad hoc testing techniques exist under specific assumptions, no concerted effort has been made by the research community to develop a flexible and extendable tool for testing differentially private mechanisms. This paper introduces DP-Auditorium as a step advancing research in this direction. DP-Auditorium abstracts the problem of testing differential privacy into two steps: (1) measuring the distance between distributions, and (2) finding neighboring datasets where a mechanism generates output distributions maximizing such distance. From a technical point of view, we propose three new algorithms for evaluating the distance between distributions. While these algorithms are well-established in the statistics community, we provide new estimation guarantees that exploit the fact that we are only interested in verifying whether a mechanism is differentially private, and not in obtaining an exact estimate of the distance between two distributions. DP-Auditorium is easily extensible, as demonstrated in this paper by implementing a well-known approximate differential privacy testing algorithm into our library. We provide an extensive comparison to date of multiple testers across varying sample sizes and differential privacy parameters, demonstrating that there is no single tester that dominates all others, and that a combination of different techniques is required to ensure proper testing of mechanisms. View details
    Preview abstract At Google, we’ve been running a quarterly large-scale survey with developers since 2018. In this article, we will discuss how we run EngSat, some of our key learnings over the past 6 years, and how we’ve evolved our approach to meet new needs and challenges. View details
    PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks
    Marina Neseem
    Conor McCullough
    Randy Hsin
    Chas Leichner
    Shan Li
    In Suk Chong
    Andrew Howard
    Lukasz Lew
    Sherief Reda
    Ville-Mikko Rautio
    Daniele Moro
    Conference on Computer Vision and Pattern Recognition (2024) (to appear)
    Preview abstract Low-precision quantization is recognized for its efficacy in neural network optimization. Our analysis reveals that non-quantized elementwise operations which are prevalent in layers such as parameterized activation functions, batch normalization, and quantization scaling dominate the inference cost of low-precision models. These non-quantized elementwise operations are commonly overlooked in SOTA efficiency metrics such as Arithmetic Computation Effort (ACE). In this paper, we propose ACEv2 - an extended version of ACE which offers a better alignment with the inference cost of quantized models and their energy consumption on ML hardware. Moreover, we introduce PikeLPN, a model that addresses these efficiency issues by applying quantization to both elementwise operations and multiply-accumulate operations. In particular, we present a novel quantization technique for batch normalization layers named QuantNorm which allows for quantizing the batch normalization parameters without compromising the model performance. Additionally, we propose applying Double Quantization where the quantization scaling parameters are quantized. Furthermore, we recognize and resolve the issue of distribution mismatch in Separable Convolution layers by introducing Distribution-Heterogeneous Quantization which enables quantizing them to low-precision. PikeLPN achieves Pareto-optimality in efficiency-accuracy trade-off with up to 3X efficiency improvement compared to SOTA low-precision models. View details
    Preview abstract Relational affect is the affective response (encompassing emotion, expression, feeling) that emerges from an interaction between two people. The case study presented here introduces the concept of relational affect through a human perceptual rating task. Forty-five raters watched short video clips of two people interacting and described their perceived emotion of the individuals and that of the overall interaction. Our qualitative analysis of the rater responses showed that raters used a variety of schemes to reason about emotion, including expressions, context, and perceived appraisal of the event. These reasoning schemes were notably different for perceived individual emotion and relational affect. Our findings show that the vocabulary use for relational affect is distinct from that of individual emotion and relational affect as a phenomenon deepens our understanding of social interactions and moves the field a step closer to realizing the goal of fluid interactions between people and technology. View details
    Distributed Tracing for InterPlanetary File System
    Marshall David Miller
    Rachel Han
    Haorui Guo
    2024 International Symposium on Parallel Computing and Distributed Systems (PCDS), IEEE, pp. 1-5
    Preview abstract The InterPlanetary File System (IPFS) is on its way to becoming the backbone of the next generation of the web. However, it suffers from several performance bottlenecks, particularly on the content retrieval path, which are often difficult to debug. This is because content retrieval involves multiple peers on the decentralized network and the issue could lie anywhere in the network. Traditional debugging tools are insufficient to help web developers who face the challenge of slow loading websites and detrimental user experience. This limits the adoption and future scalability of IPFS. In this paper, we aim to gain valuable insights into how content retrieval requests propagate within the IPFS network as well as identify potential performance bottlenecks which could lead to opportunities for improvement. We propose a custom tracing framework that generates and manages traces for crucial events that take place on each peer during content retrieval. The framework leverages event semantics to build a timeline of each protocol involved in the retrieval, helping developers pinpoint problems. Additionally, it is resilient to malicious behaviors of the peers in the decentralized environment. We have implemented this framework on top of an existing IPFS implementation written in Java called Nabu. Our evaluation shows that the framework can identify network delays and issues with each peer involved in content retrieval requests at a very low overhead. View details
    Analysis of objective and subjective sleep metrics and smartphone usage patterns
    Conor Heneghan
    Daniel McDuff
    Ari Winbush
    Nicholas Allen
    John Hernandez
    Allen Jiang
    Andrew Barakat
    Logan Schneider
    Benjamin Nelson
    Ben Yetton
    Preview abstract Analysis of objective and subjective sleep metrics and smartphone usage patterns Conor Heneghan, , Daniel McDuff, Ari Winbush, Nicholas Allen, John Hernandez, Allen Jiang,, Andrew Barakat, Logan Schneider, Benjamin Nelson, Ben Yetton Consumer Health Research Team, Google Inc. Department of Psychology, University of Oregon Verily Life Sciences Department of Psychiatry, Harvard Medical School and Beth Israel Deaconess Medical Center Introduction: The Digital Wellbeing Study is an IRB approved joint study between the University of Oregon and Google to investigate how smartphone usage interacts with objective and subjective parameters of well-being such as sleep, exercise and stress. The study recruited a demographically diverse population who each wore a smartwatch and installed a smartphone app linked to the study. Participants completed demographic and health questionnaires including the PROMIS Sleep Disturbance (SD) Short Form. Aims of the study included (a) whether objective sleep duration was correlated with smartphone use, and (b) whether smartphone usage could predict the subjective self reported sleep instrument. Methods: There was sufficient data from 7,499 users to conduct a population modeling analysis. An Ordinary Least Squares linear model was used as a predictor of each subject’s average total sleep time (TST) and their SD t-score. The inputs to the model included demographics, and population z-scored activity measures (steps, sedentary time, time driving, time at work, home and other locations, phone screen time, frequency of phone unlocks) over seven days prior to the survey. Results: The activity measures and baseline demographics could only explain a small amount of the overall variance in TST and SD (R^2=0.04 for TST and R^2=0.05 for SD). Phone screen time was a statistically significant predictor of both TST (-8.19 mins, p< 0.001) and self-reported sleep disruption (0.611 t-score units, p< 0.001). The number of phone unlocks was a predictor of variability in TST (-3.33 mins, p< 0.001) suggesting that longer session times are correlated with greater TST variability. The effects are minimal (e.g., a subject who has one standard deviation greater phone screen time than average would be predicted to only see a 2% reduction in TST, and a 0.6% increase in perceived sleep disturbance). Time driving and step count were also minor predictors of SD and TST. Conclusion: At a population level, average activity measures from wearables and smartphones such as steps, smartphone usage time, sedentary activity etc. are limited predictors of objective sleep metrics such as Total Sleep Time, and subjective sleep metrics such as the PROMIS Sleep Disturbance t-score. Support (if any): This research was funded by Google Inc. View details
    Meta-Manager: A Tool for Collecting and Exploring Meta Information about Code
    Amber Horvath
    Brad A. Myers
    CHI '24: Proceedings of the CHI Conference on Human Factors in Computing Systems (2024)
    Preview abstract Modern software engineering is in a state of flux. With more development utilizing AI code generation tools and the continued reliance on online programming resources, understanding code and the original intent behind it is becoming more important than it ever has been. To this end, we have developed the “Meta-Manager”, a Visual Studio Code extension, with a supplementary browser extension, that automatically collects and organizes changes made to code while keeping track of the provenance of each part of the code, including code that has been copy-pasted from popular programming resources online. These sources and subsequent changes are represented in the editor and may be explored using searching and filtering mechanisms to help developers answer historically hard-to-answer questions about code, its provenance, and its design rationale. In our evaluation of Meta-Manager, we found developers were successfully able to use it to answer otherwise unanswerable questions about an unfamiliar code base. View details
    Preview abstract The web utilizes permission prompts to moderate access to certain capabilities. We present the first investigation of user behavior and sentiment of this security and privacy measure on the web, using 28 days of telemetry data from more than 100M Chrome installations on desktop platforms and experience sampling responses from 25,706 Chrome users. Based on this data, we find that ignoring and dismissing permission prompts are most common for geolocation and notifications. Permission prompts are perceived as more annoying and interrupting when they are not allowed, and most respondents cite a rational reason for the decision they took. Our data also supports that the perceived availability of contextual information from the requesting website is associated with allowing access to a requested capability. More usable permission controls could facilitate adoption of best practices that address several of the identified challenges; and ultimately could lead to better user experiences and a safer web. View details
    Generative AI in Creative Practice: ML-Artist Folk Theories of T2I Use, Harm, and Harm-Reduction
    Shalaleh Rismani
    Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI '24), Association for Computing Machinery (2024), pp. 1-17 (to appear)
    Preview abstract Understanding how communities experience algorithms is necessary to mitigate potential harmful impacts. This paper presents folk theories of text-to-image (T2I) models to enrich understanding of how artist communities experience creative machine learning (ML) systems. This research draws on data collected from a workshop with 15 artists from 10 countries who incorporate T2I models in their creative practice. Through reflexive thematic analysis of workshop data, we highlight theorization of T2I use, harm, and harm-reduction. Folk theories of use envision T2I models as an artistic medium, a mundane tool, and locate true creativity as rising above model affordances. Theories of harm articulate T2I models as harmed by engineering efforts to eliminate glitches and product policy efforts to limit functionality. Theories of harm-reduction orient towards protecting T2I models for creative practice through transparency and distributed governance. We examine how these theories relate, and conclude by discussing how folk theorization informs responsible AI efforts. View details
    Preview abstract In the present computerized period, information driven navigation is essential for the progress of cooperative work areas. This paper gives an extensive examination of how information designing, distributed storage, and business insight synergistically engage groups. We look at the basic standards of information designing, zeroing in on the plan, development, and the management of adaptable information pipelines. The job of distributed storage is investigated, featuring its ability to give adaptable, secure, and open information arrangements. Besides, we dive into business knowledge instruments and their capacity to change crude information into significant experiences. Through contextual analyses and exact information, we delineate the groundbreaking effect of these advances in group efficiency, coordinated effort, and dynamic cycles. This examination highlights the significance of incorporating hearty information designing works on, utilizing distributed storage arrangements, and utilizing complex business knowledge apparatuses to establish information engaged cooperative conditions. View details