Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10129 publications
Preview abstract
Inter-sentence pauses are the silences that occur between sentences in a paragraph or a dialogue.
They are an important aspect of long-form speech prosody, as they can affect the naturalness, intelligibility, and effectiveness of communication.
However, the user perception of inter-sentence pauses in long-form speech synthesis is not well understood. Previous work often evaluates pause modelling in conjunction with other prosodic features making it hard to explicitly study how raters perceive differences in inter-sentence pause lengths.
In this paper, using multiple text-to-speech (TTS) datasets that cover different content types, domains, and settings, we investigate how sensitive raters are to changes to the durations of inter-sentence pauses in long-form speech by comparing ground truth audio samples with renditions that have manipulated pause durations.
This experimental design is meant to allow us to draw conclusions regarding the utility that can be expected from similar evaluations when applied to synthesized long-form speech.
We find that, using standard evaluation methodologies, raters are not sensitive to variations in pause lengths unless these deviate exceedingly from the norms or expectations of the speech context.
View details
A scalable system to measure contrail formation on a per-flight basis
Erica Brand
Sebastian Eastham
Carl Elkin
Thomas Dean
Zebediah Engberg
Ulrike Hager
Joe Ng
Dinesh Sanekommu
Tharun Sankar
Marc Shapiro
Environmental Research Communications (2024)
Preview abstract
In this work we describe a scalable, automated system to determine from satellite data whether a given flight has made a persistent contrail.
The system works by comparing flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a `flight matching' algorithm and use it to label each flight segment as a `match' or `non-match'. We perform this analysis on 1.6 million flight segments and compare these labels to existing contrail prediction methods based on weather forecast data. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We find that current contrail prediction models fail to correctly predict whether we will match a contrail in many cases.
View details
Preview abstract
We focus on the problem of learning without forgetting from multiple tasks arriving sequentially, where each task is defined using a few-shot episode of novel or already seen classes. We approach this problem using the recently published HyperTransformer (HT), a Transformer-based hypernetwork that generates specialized task-specific CNN weights directly from the support set. In order to learn from a continual sequence of tasks, we propose to recursively re-use the generated weights as input to the HT for the next task. This way, the generated CNN weights themselves act as a representation of previously learned tasks, and the HT is trained to update these weights so that the new task can be learned without forgetting past tasks. This approach is different from most continual learning algorithms that typically rely on using replay buffers, weight regularization or task-dependent architectural changes. We demonstrate that our proposed Continual HyperTransformer method equipped with a prototypical loss is capable of learning and retaining knowledge about past tasks for a variety of scenarios, including learning from mini-batches, and task-incremental and class-incremental learning scenarios.
View details
UniAR: A Unified model for predicting human Attention and Responses on visual content
Peizhao Li
Gang Li
Rachit Bhargava
Shaolei Shen
Youwei Liang
Hongxiang Gu
Venky Ramachandran
Golnaz Farhadi
Preview abstract
Progress in human behavior modeling involves understanding both implicit, early-stage perceptual behavior, such as human attention, and explicit, later-stage behavior, such as subjective preferences or likes. Yet most prior research has focused on modeling implicit and explicit human behavior in isolation; and often limited to a specific type of visual content. We propose UniAR – a unified model of human attention and preference behavior across diverse visual content. UniAR leverages a multimodal transformer to predict subjective feedback, such as satisfaction or aesthetic quality, along with the underlying human attention or interaction heatmaps and viewing order. We train UniAR on diverse public datasets spanning natural images, webpages, and graphic designs, and achieve SOTA performance on multiple benchmarks across various image domains and behavior modeling tasks. Potential applications include providing instant feedback on the effectiveness of UIs/visual content, and enabling designers and content-creation models to optimize their creation for human-centric improvements.
View details
Ubiquitous and Low-Cost Generation of Elevation Pseudo Ground Control Points
Etienne Le Grand
Moustafa Youssef
14th International Conference on Indoor Positioning and Indoor Navigation (IPIN). Hong Kong, China, 2024.
Preview abstract
In this paper, we design a system to generate Pseudo Ground Control Points (PGCPs) using standard low-cost widely available GNSS receivers in a crowd-sourcing manner. We propose a number of GNSS points filters that removes different causes of errors and biases, and design a linear regression height estimator leading to high-accuracy PGCP elevations. Evaluation of our system shows that the PGCPs can achieve a median accuracy of 22.5 cm in 25 metropolitan areas in the USA.
View details
PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
Adel Javanmard
Proceedings of the 41st International Conference on Machine Learning (2024), pp. 21410-21429
Preview abstract
This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called \emph{bags} in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We propose the \texttt{PriorBoost} algorithm, which iteratively forms increasingly homogenous bags with respect to (unseen) individual responses to improve model quality. We also explore label differential privacy for aggregate learning, and provide extensive experiments that demonstrate that \PriorBoost regularly achieves optimal quality, in contrast to non-adaptive algorithms for aggregate learning.
View details
Rethinking FID: Towards a Better Evaluation Metric for Image Generation
Sadeep Jayasumana
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
Preview abstract
As with many machine learning problems, the progress of image generation methods hinges on good evaluation metrics. One of the most popular is the Frechet Inception Distance (FID). FID estimates the distance between a distribution of Inception-v3 features of real images, and those of images generated by the algorithm. We highlight important drawbacks of FID: Inception's poor representation of the rich and varied content generated by modern text-to-image models, incorrect normality assumptions, and poor sample complexity. We call for a reevaluation of FID's use as the primary quality metric for generated images. We empirically demonstrate that FID contradicts human raters, it does not reflect gradual improvement of iterative text-to-image models, it does not capture distortion levels, and that it produces inconsistent results when varying the sample size. We also propose an alternative new metric, CMMD, based on richer CLIP embeddings and the maximum mean discrepancy distance with the Gaussian RBF kernel. It is an unbiased estimator that does not make any assumptions on the probability distribution of the embeddings and is sample efficient. Through extensive experiments and analysis, we demonstrate that FID-based evaluations of text-to-image models may be unreliable, and that CMMD offers a more robust and reliable assessment of image quality.
View details
AI-Enhanced API Design: A New Paradigm in Usability and Efficiency
Mak Ahmad
David R Karger
Kwan-Liu Ma
CHI EA '24: Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (2024)
Preview abstract
This study uses mixed methods to evaluate API design methods, focusing on design and consumption phases. Our goal was to understand the impact of API governance approaches on productivity and usability. A controlled developer experiment (n=34) demonstrated
a 10% increased requirement fulfillment using API Improvement Proposals (AIPs) and linter versus no protocols. Meanwhile, 73% of 33 surveyed API consumers preferred AIP-aligned designs for enhanced usability and comprehensibility. Complementing this, a
custom large language model called the API Architect received average expert ratings of just 5/10 for specification quality, revealing gaps versus manual design. The quantitative performance metrics combined with qualitative user feedback provide evidence from
multiple angles that strategically integrating industry best practices with maturing AI capabilities can meaningfully improve API design outcomes. This research offers empirical insights from developer and consumer perspectives to advance scholarly discourse
and industry practice regarding optimal API design workflows.
View details
A Decentralized SDN Architecture for the WAN
Nitika Saran
Ashok Narayanan
Sylvia Ratnasamy
Ankit Singla
Hakim Weatherspoon
2024 ACM Special Interest Group on Data Communication (SIGCOMM) (2024)
Preview abstract
Motivated by our experiences operating a global WAN, we argue that SDN’s reliance on infrastructure external to the data plane has significantly complicated the challenge of maintaining high availability. We propose a new decentralized SDN (dSDN) architecture in which SDN control logic instead runs within routers, eliminating the control plane’s reliance on external infrastructure and restoring fate sharing between control and data planes.
We present dSDN as a simpler approach to realizing the benefits of SDN in the WAN. Despite its much simpler design, we show that dSDN is practical from an implementation viewpoint, and outperforms centralized SDN in terms of routing convergence and SLO impact.
View details
Preview abstract
This paper presents a Multifunctional wearable
sensing system that integrates flexible Laser-Induced-Graphene
(LIG) based sensors and an Open-Source Analog Front-End
(AFE) chip. The LIG sensors are fabricated on polyimide (PI)
Flexible Printed Circuit Board (FPCB) through CO2 infrared
laser direct-write method. The LIG sensors provide repeatable
high-precision temperature sensing, humidity measurement, and
strain detection capabilities. The temperature sensing charac-
terization shows the resistive LIG sensor has a sensitivity of
-0.0493 %/°C, the linear fit R-square factors ≥ 0.9973 across -40
°C to 125 °C. The capacitive humidity sensor achieves a 23.6
times capacitance at 95% relative humidity (RH) compared to
the value observed in a dry environment. Our proposed AFE
chip contains a hybrid folded-cascode Operational Amplifier
(OPAMP) and a Successive Approximation Register Analog-
to-Digital Converter (SAR ADC). Designed using open-source
analog flow and fabricated in GF180 OpenPDK, the AFE chip
serves as a flexible and universal readout platform, adaptable for
various sensing applications. A real-time demonstration of finger
bending detection is performed to validate the functionality.
The multifunctional sensing capability provide by the wearable
system is attractive for personal healthcare application. This
work underscores the integration of the LIG sensors and the
AFE chip, developed using open-source tools which facilitate
rapid and affordable prototyping for a multifunctional flexible
wearable sensing system.
View details
API Governance at Scale
Mak Ahmad
JJ Geewax
David R Karger
Kwan-Liu Ma
ICSE 2024 Software Engineering in Practice (2024)
Preview abstract
API Governance, the process of applying standardized sets of policies and guardrails to the design and development of APIs, has only grown in importance and prominence given the continued growth in APIs being produced. In this paper, we present an Action Research style approach to investigate and understand the utility of a multi-faceted API Governance process being adopted inside Google. We first reflect on past research around API Governance, and then introduce three new components, 1. API Improvement Proposals (AIPs) the documented source of truth for API design rules, 2. API Linter, an automated analysis tool which checks for adherence to / violations of AIPs, and 3. API Readability, a program to educate and certify API design experts. These three components are designed to build upon pre-existing processes to scale and improve API design. Through a mixed-methods research strategy, containing both a survey and a series of interviews, we evaluate the utility of these approaches in supporting API Producers. Our research shows that API Producers have positive sentiment towards API Governance, validating the general direction of the program. Specifically, our study participants highlighted the positive impact of API Governance on the quality of the APIs they produced, via consistency in both the outcome and approach. This paper also discusses future research opportunities to enhance API Governance, specifically with regards to newer API Producers, who reported worse sentiment towards the program than their more experienced peers.
View details
Bridging the Preference Gap between Retrievers and LLMs
Zixuan Ke
Qiaozhu Mei
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024) (to appear)
Preview abstract
Large Language Models (LLMs) have demonstrated superior results across a wide range of tasks, and Retrieval-augmented Generation (RAG) is an effective way to enhance the performance by locating relevant information and placing it into the context window of the LLM. However, the relationship between retrievers and LLM in a RAG is still under-investigated. Most existing work treats the retriever and the LLM as independent components and leaves a gap between retrieving human-"friendly" information and assembling a LLM-"friendly" context. In this work, we examine a novel bridge mechanism. We validate the ranking and selection assumptions of retrievers in the context of RAG and propose a framework that chains together supervised and reinforcement learning to train a bridge model that optimizes the connection between the retriever and the LLM. Empirical results demonstrate the effectiveness of our method in both question-answering and personalized generation tasks.
View details
Characterizing a Memory Allocator at Warehouse Scale
Zhuangzhuang Zhou
Nilay Vaish
Patrick Xia
Christina Delimitrou
Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3, Association for Computing Machinery, La Jolla, CA, USA (2024), 192–206
Preview abstract
Memory allocation constitutes a substantial component of warehouse-scale computation. Optimizing the memory allocator not only reduces the datacenter tax, but also improves application performance, leading to significant cost savings.
We present the first comprehensive characterization study of TCMalloc, a warehouse-scale memory allocator used in our production fleet. Our characterization reveals a profound diversity in the memory allocation patterns, allocated object sizes and lifetimes, for large-scale datacenter workloads, as well as in their performance on heterogeneous hardware platforms. Based on these insights, we redesign TCMalloc for warehouse-scale environments. Specifically, we propose optimizations for each level of its cache hierarchy that include usage-based dynamic sizing of allocator caches, leveraging hardware topology to mitigate inter-core communication overhead, and improving allocation packing algorithms based on statistical data. We evaluate these design choices using benchmarks and fleet-wide A/B experiments in our production fleet, resulting in a 1.4% improvement in throughput and a 3.4% reduction in RAM usage for the entire fleet. At our scale, even a single percent CPU or memory improvement translates to significant savings in server costs.
View details
Expressing and Analyzing Quantum Algorithms with Qualtran
Charles Yuan
Anurudh Peduri
arXiv::2409.04643 (2024)
Preview abstract
Quantum computing's transition from theory to reality has spurred the need for novel software tools to manage the increasing complexity, sophistication, toil, and chance for error of quantum algorithm development. We present Qualtran, an open-source library for representing and analyzing quantum algorithms. Using carefully chosen abstractions and data structures, we can simulate and test algorithms, automatically generate information-rich diagrams, and tabulate resource requirements. Qualtran offers a \emph{standard library} of algorithmic building blocks that are essential for modern cost-minimizing compilations. Its capabilities are showcased through the re-analysis of key algorithms in Hamiltonian simulation, chemistry, and cryptography. The resulting architecture-independent resource counts can be forwarded to our implementation of cost models to estimate physical costs like wall-clock time and number of physical qubits assuming a surface-code architecture. Qualtran provides a foundation for explicit constructions and reproducible analysis, fostering greater collaboration within the quantum algorithm development community. We believe tools like Qualtran will accelerate progress in the field.
View details
AGILE3D: Attention Guided Interactive Multi-object 3D Segmentation
Yuanwen Yue
Sabarinath Mahadevan
Jonas Schult
Francis Engelmann
Bastian Leibe
Konrad Schindler
Theodora Kontogianni
ICLR (2024)
Preview abstract
During interactive segmentation, a model and a user work together to delineate objects of interest in a 3D point cloud. In an iterative process, the model assigns each data point to an object (or the background), while the user corrects errors in the resulting segmentation and feeds them back into the model. The current best practice formulates the problem as binary classification and segments objects one at a time. The model expects the user to provide positive clicks to indicate regions wrongly assigned to the background and negative clicks on regions wrongly assigned to the object. Sequentially visiting objects is wasteful since it disregards synergies between objects: a positive click for a given object can, by definition, serve as a negative click for nearby objects. Moreover, a direct competition between adjacent objects can speed up the identification of their common boundary. We introduce AGILE3D, an efficient, attention-based model that (1) supports simultaneous segmentation of multiple 3D objects, (2) yields more accurate segmentation masks with fewer user clicks, and (3) offers faster inference. Our core idea is to encode user clicks as spatial-temporal queries and enable explicit interactions between click queries as well as between them and the 3D scene through a click attention module. Every time new clicks are added, we only need to run a lightweight decoder that produces updated segmentation masks. In experiments with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art. Moreover, we also verify its practicality in real-world setups with real user studies. Project page: https://ywyue.github.io/AGILE3D.
View details