Jump to Content
Pierre Sermanet

Pierre Sermanet

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract In recent years, much progress has been made in learning robotic manipulation policies that can follow natural language instructions. Common approaches involve learning methods that operate on offline datasets, such as task-specific teleoperated demonstrations or on hindsight labeled robotic experience. Such methods work reasonably but rely strongly on the assumption of clean data: teleoperated demonstrations are collected with specific tasks in mind, while hindsight language descriptions rely on expensive human labeling. Recently, large-scale pretrained language and vision-language models like CLIP have been applied to robotics in the form of learning representations and planners. However, can these pretrained models also be used to cheaply impart internet-scale knowledge onto offline datasets, providing access to skills contained in the offline dataset that weren't necessarily reflected in ground truth labels? We investigate fine-tuning a reward model on a small dataset of robot interactions with crowd-sourced natural language labels and using the model to relabel instructions of a large offline robot dataset. The resulting dataset with diverse language skills is used to train imitation learning policies, which outperform prior methods by up to 30% when evaluated on a diverse set of novel language instructions that were not contained in the original dataset. View details
    Robotic Table Tennis: A Case Study into a High Speed Learning System
    Jon Abelian
    Saminda Abeyruwan
    Michael Ahn
    Justin Boyd
    Erwin Johan Coumans
    Omar Escareno
    Wenbo Gao
    Navdeep Jaitly
    Juhana Kangaspunta
    Satoshi Kataoka
    Gus Kouretas
    Yuheng Kuang
    Corey Lynch
    Thinh Nguyen
    Ken Oslund
    Barney J. Reed
    Anish Shankar
    Avi Singh
    Grace Vesom
    Peng Xu
    Robotics: Science and Systems (2023)
    Preview abstract We present a deep-dive into a learning robotic system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized and novel perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description including numerous design decisions that are typically not widely disseminated, with a collection of ablation studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, and sensitivity to policy hyper-parameters and choice of action space. A video demonstrating the components of our system and details of experimental results is included in the supplementary material. View details
    InnerMonologue: Embodied Reasoning through Planning with Language Models
    Wenlong Huang
    Harris Chan
    Jacky Liang
    Igor Mordatch
    Yevgen Chebotar
    Noah Brown
    Tomas Jackson
    Linda Luu
    Brian Andrew Ichter
    Conference on Robot Learning (2022) (to appear)
    Preview abstract Recent works have shown the capabilities of large language models to perform tasks requiring reasoning and to be applied to applications beyond natural language processing, such as planning and interaction for embodied robots.These embodied problems require an agent to understand the repertoire of skills available to a robot and the order in which they should be applied. They also require an agent to understand and ground itself within the environment. In this work we investigate to what extent LLMs can reason over sources of feedback provided through natural language. We propose an inner monologue as a way for an LLM to think through this process and plan. We investigate a variety of sources of feedback, such as success detectors and object detectors, as well as human interaction. The proposed method is validated in a simulation domain and on real robotic. We show that Innerlogue can successfully replan around failures, and generate new plans to accommodate human intent. View details
    GoalsEye: Learning High Speed Precision Table Tennis on a Physical Robot
    Saminda Wishwajith Abeyruwan
    Anish Shankar
    Corey Harrison Lynch
    International Conference on Intelligent Robots and Systems (IROS) (2022)
    Preview abstract Learning goal conditioned control in the real world is a challenging open problem in robotics. Reinforcement learning systems have the potential to learn autonomously via trial-and-error, but in practice the costs of manual reward design, ensuring safe exploration, and hyperparameter tuning are often enough to preclude real world deployment. Imitation learning approaches, on the other hand, offer a simple way to learn control in the real world, but typically require costly curated demonstration data and lack a mechanism for continuous improvement. Recently, iterative imitation techniques have been shown to learn goal directed control from undirected demonstration data, and improve continuously via self-supervised goal reaching, but results thus far have been limited to simulated environments. In this work, we present evidence that iterative imitation learning can scale to goal-directed behavior on a real robot in a dynamic setting: high speed, precision table tennis (e.g. "land the ball on this particular target"). We find that this approach offers a straightforward way to do continuous on-robot learning, without complexities such as reward design or sim-to-real transfer. It is also scalable -- sample efficient enough to train on a physical robot in just a few hours. In real world evaluations, we find that the resulting policy can perform on par or better than amateur humans (with players sampled randomly from a robotics lab) at the task of returning the ball to specific targets on the table. Finally, we analyze the effect of an initial undirected bootstrap dataset size on performance, finding that a modest amount of unstructured demonstration data provided up-front drastically speeds up the convergence of a general purpose goal-reaching policy. View details
    Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
    Alexander Herzog
    Alexander Toshkov Toshev
    Anthony Brohan
    Brian Andrew Ichter
    Byron David
    Clayton Tan
    Diego Reyes
    Dmitry Kalashnikov
    Eric Victor Jang
    Jarek Liam Rettinghouse
    Jornell Lacanlale Quiambao
    Julian Ibarz
    Kyle Alan Jeffrey
    Linda Luu
    Mengyuan Yan
    Michael Soogil Ahn
    Nicolas Sievers
    Noah Brown
    Omar Eduardo Escareno Cortes
    Peng Xu
    Peter Pastor Sampedro
    Rosario Jauregui Ruano
    Sally Augusta Jesmonth
    Steve Xu
    Yao Lu
    Yevgen Chebotar
    Yuheng Kuang
    Conference on Robot Learning 2022 (2022)
    Preview abstract Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could in principle be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack contextual grounding, which makes it difficult to leverage them for decision making within a given real-world context. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide this grounding by means of pretrained behaviors, which are used to condition the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model’s “hands and eyes,” while the language model supplies high-level semantic knowledge about the task. We show how low-level tasks can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally extended instructions, while value functions associated with these tasks provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show that this approach is capable of executing long-horizon, abstract, natural-language tasks on a mobile manipulator. The project's website and the video can be found at \url{say-can.github.io}. View details
    Preview abstract The need for understanding periodic videos is pervasive. Videos of biological processes, manufacturing processes, people exercising, objects being manipulated are only a few examples where the respective fields would benefit greatly if they were able to process periodic videos automatically. We present an approach for estimating the period with which an action is repeated in a video. The crux of the approach lies in leveraging temporal self-similarity as an intermediate representation bottleneck that allows generalization to unseen videos in the wild. We train this model with a synthetic dataset from a large unlabeled video dataset by sampling short clips of varying lengths and repeating them with different periods. However, simply training powerful video classification models on this synthetic dataset doesn't transfer to real videos. We constrain the period prediction model to use the self-similarity of temporal representations to ensure that the model generalizes to real videos with repeated actions. This combination of synthetic data and a powerful yet constrained model allows us to predict periods in a class-agnostic fashion. Our repetition counting model substantially exceeds the state of the art performance on existing periodicity benchmarks. We also collect a new challenging dataset called Countix which is more difficult than the existing datasets, capturing difficulties in repetition counting in videos in the real-world. We present extensive experiments on this dataset and hope this encourages more research in this important problem. View details
    Preview abstract We propose a self-supervised approach for learning representations of objects from monocular videos and demonstrate it is particularly useful in situated settings such as robotics. The main contributions of this paper are: 1) a self-supervising objective trained with contrastive learning that can discover and disentangle object attributes from video without using any labels; 2) we leverage object self-supervision for online adaptation: the longer our online model looks at objects in a video, the lower the object identification error, while the offline baseline remains with a large fixed error; 3) to explore the possibilities of a system entirely free of human supervision, we let a robot collect its own data, train on this data with our self-supervise scheme, and then show the robot can point to objects similar to the one presented in front of it, demonstrating generalization of object attributes. An interesting and perhaps surprising finding of this approach is that given a limited set of objects, object correspondences will naturally emerge when using contrastive learning without requiring explicit positive pairs. Videos illustrating online object adaptation and robotic pointing are available at this address: https://sites.google.com/view/object-contrastive-networks/home View details
    Preview abstract We introduce a self-supervised representation learning method based on the task of temporal alignment between videos. The method trains a network using temporal cycleconsistency (TCC), a differentiable cycle-consistency loss that can be used to find correspondences across time in multiple videos. The resulting per-frame embeddings can be used to align videos by simply matching frames using nearest-neighbors in the learned embedding space. To evaluate the power of the embeddings, we densely label the Pouring and Penn Action video datasets for action phases. We show that (i) the learned embeddings enable few-shot classification of these action phases, significantly reducing the supervised training requirements; and (ii) TCC is complementary to other methods of selfsupervised learning in videos, such as Shuffle and Learn and Time-Contrastive Networks. The embeddings are also used for a number of applications based on alignment (dense temporal correspondence) between video pairs, including transfer of metadata of synchronized modalities between videos (sounds, temporal semantic labels), synchronized playback of multiple videos, and anomaly detection. Project webpage: https://sites.google.com/view/temporal-cycle-consistency. View details
    Preview abstract We propose a self-supervised approach to learning a wide variety of manipulation skills from unlabeled data collected through playing in and interacting within a playground environment. Learning by playing offers three main advantages: 1) Collecting large amounts of play data is cheap and fast as it does not require staging the scene nor labeling data, 2) It relaxes the need to have a discrete and rigid definition of skills/tasks during the data collection. This allows the agent to focus on acquiring a continuum set of manipulation skills as a whole, which can then be conditioned to perform a particular skill such as grasping. Furthermore, this data already includes ways to recover, retry or transition between different skills, which can be used to achieve a reactive closed-loop control policy, 3) It allows to quickly learn a new skill from making use of pre-existing general abilities. Our proposed approach to learning new skills from unlabeled play data decouples high-level planning prediction from low-level action prediction by: first self-supervise learning of a latent planning space, then self-supervise learning of an action model that is conditioned on a latent plan. This results in a single task-agnostic policy conditioned on a user-provided goal. This policy can perform a variety of tasks in the environment where playing was observed. We train a single model on 3 hours of unlabeled play data and evaluate it on 18 tasks simply by feeding a goal state corresponding to each task. The baseline model reaches an accuracy of 65\% using 18 specialized policies in 100-shot per task and trained on 1800 expensive demonstrations. Our model completes the tasks with an average of 85\% accuracy using a single policy in zero shots (having never been explicitly trained on these tasks) using cheap unlabeled data. Videos of the performed experiments are available at https://sites.google.com/view/sslmp View details
    Preview abstract Recently, deep learning based models have pushed the state-of-the-art performance for the task of action recognition in videos. Yet, for many large-scale datasets like Kinetics and UCF101, the correct temporal order of frames doesn't seem to be essential to solving the task. We find that the temporal order matters more for the recently introduced 20BN Something-Something dataset where the task of fine-grained action recognition necessitates the model to do temporal reasoning. We show that when temporal order matters, recurrent models can significantly outperform non-recurrent models. This also provides us with an opportunity to inspect the recurrent units using qualitative approaches to get more insight into what they are encoding about actions in videos. View details
    Preview abstract In this work we explore a new approach for robots to teach themselves about the world simply by observing it. In particular we investigate the effectiveness of learning task-agnostic representations for continuous control tasks. We extend Time-Contrastive Networks (TCN) that learn from visual observations by embedding multiple frames jointly in the embedding space as opposed to a single frame. We show that by doing so, we are now able to encode both position and velocity attributes significantly more accurately. We test the usefulness of this self-supervised approach in a reinforcement learning setting. We show that the representations learned by agents observing themselves take random actions, or other agents perform tasks successfully, can enable the learning of continuous control policies using algorithms like Proximal Policy Optimization (PPO) using only the learned embeddings as input. We also demonstrate significant improvements on the real-world Pouring dataset with a relative error reduction of 39.4% for motion attributes and 11.1% for static attributes compared to the single-frame baseline. Video results are available at this https URL . View details
    Time-Contrastive Networks: Self-Supervised Learning from Video
    Corey Lynch
    Yevgen Chebotar
    Eric Jang
    Stefan Schaal
    Proceedings of International Conference in Robotics and Automation (ICRA 2018) + Deep Learning for Robotic Vision (DLRV) Workshop at CVPR 2017 + Deep Reinforcement Learning Symposium at NIPS 2017 (2018)
    Preview abstract We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a triplet loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitate View details
    Preview abstract In this work we explore a new approach for robots to teach themselves about the world simply by observing it. In particular we investigate the effectiveness of learning task-agnostic representations for continuous control tasks. We extend Time-Contrastive Networks (TCN) that learn from visual observations by embedding multiple frames jointly in the embedding space as opposed to a single frame. We show that by doing so, we are now able to encode both position and velocity attributes significantly more accurately. We test the usefulness of this self-supervised approach in a reinforcement learning setting. We show that the representations learned by agents observing themselves take random actions, or other agents perform tasks successfully, can enable the learning of continuous control policies using algorithms like Proximal Policy Optimization (PPO) using only the learned embeddings as input. View details
    Unsupervised Perceptual Rewards for Imitation Learning
    Kelvin Xu
    Proceedings of Robotics: Science and Systems (RSS 2017) + Deep Learning for Action and Interaction workshop at NIPS (2016) + International Conference on Learning Representations (ICLR 2017) Workshop (2017)
    Preview abstract Reward function design and exploration time are arguably the biggest obstacles to the deployment of reinforcement learning (RL) agents in the real world. In many real-world tasks, designing a reward function takes considerable hand engineering and often requires additional sensors to be installed just to measure whether the task has been executed successfully. Furthermore, many interesting tasks consist of multiple implicit intermediate steps that must be executed in sequence. Even when the final outcome can be measured, it does not necessarily provide feedback on these intermediate steps. To address these issues, we propose leveraging the abstraction power of intermediate visual representations learned by deep models to quickly infer perceptual reward functions from small numbers of demonstrations. We present a method that is able to identify key intermediate steps of a task from only a handful of demonstration sequences, and automatically identify the most discriminative features for identifying these steps. This method makes use of the features in a pre-trained deep model, but does not require any explicit specification of sub-goals. The resulting reward functions can then be used by an RL agent to learn to perform the task in real-world settings. To evaluate the learned reward, we present qualitative results on two real-world tasks and a quantitative evaluation against a human-designed reward function. We also show that our method can be used to learn a real-world door opening skill using a real robot, even when the demonstration used for reward learning is provided by a human using their own hand. To our knowledge, these are the first results showing that complex robotic manipulation skills can be learned directly and without supervised labels from a video of a human performing the task. Supplementary material and data are available at https://sermanet.github.io/rewards View details
    Going Deeper with Convolutions
    Christian Szegedy
    Wei Liu
    Yangqing Jia
    Scott Reed
    Dragomir Anguelov
    Andrew Rabinovich
    Computer Vision and Pattern Recognition (CVPR) (2015)
    Preview abstract We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation of this architecture, GoogLeNet, a 22 layers deep network, was used to assess its quality in the context of object detection and classification. View details
    Attention for fine-grained categorization
    Andrea Frome
    International Conference on Learning Representations (ICLR 2015) workshop
    Preview abstract This paper presents experiments extending the work of Ba et al. (2014) on recurrent neural models for attention into less constrained visual environments, specifically fine-grained categorization on the Stanford Dogs data set. In this work we use an RNN of the same structure but substitute a more powerful visual network and perform large-scale pre-training of the visual network outside of the attention RNN. Most work in attention models to date focuses on tasks with toy or more constrained visual environments, whereas we present results for fine-grained categorization better than the state-of-the-art GoogLeNet classification model. We show that our model learns to direct high resolution attention to the most discriminative regions without any spatial supervision such as bounding boxes, and it is able to discriminate fine-grained dog breeds moderately well even when given only an initial low-resolution context image and narrow, inexpensive glimpses at faces and fur patterns. This and similar attention models have the major advantage of being trained end-to-end, as opposed to other current detection and recognition pipelines with hand-engineered components where information is lost. While our model is state-of-the-art, further work is needed to fully leverage the sequential input. View details
    Overfeat: Integrated recognition, localization and detection using convolutional networks
    David Eigen
    Xiang Zhang
    Michael Mathieu
    Rob Fergus
    Yann LeCun
    International Conference on Learning Representations (ICLR) (2014)
    Pedestrian detection with unsupervised multi-stage feature learning
    Koray Kavukcuoglu
    Soumith Chintala
    Yann LeCun
    Computer Vision and Pattern Recognition (CVPR) (2013)
    Convolutional Neural Networks Applied to House Numbers Digit Classification
    Soumith Chintala
    Yann LeCun
    International Conference on Pattern Recognition (ICPR) (2012)
    Traffic sign recognition with multi-scale convolutional networks
    Yann LeCun
    International Joint Conference on Neural Networks (IJCNN) (2011)
    Learning convolutional feature hierarchies for visual recognition
    Koray Kavukcuoglu
    Y-Lan Boureau
    Karol Gregor
    Michael Mathieu
    Yann LeCun
    Neural Information Processing Systems (NIPS) (2010)
    A multirange architecture for collision‐free off‐road robot navigation
    Raia Hadsell
    Marco Scoffier
    Matt Grimes
    Jan Ben
    Ayse Erkan
    Chris Crudele
    Urs Muller
    Yann LeCun
    Journal of Field Robotics (2009)
    Learning long‐range vision for autonomous off‐road driving
    Raia Hadsell
    Jan Ben
    Ayse Erkan
    Marco Scoffier
    Koray Kavukcuoglu
    Urs Muller
    Yann LeCun
    Journal of Field Robotics (2009)