Krzysztof Choromanski

Krzysztof Choromanski

Krzysztof Choromanski works on several aspects of machine learning and robotics. His current research interests include reinforcement learning and randomized methods such as nonlinear embeddings based on structured random feature maps and quasi-Monte-Carlo methods. He was also working on online nonparametric clustering for massive high-dimensional streams. Krzysztof is an author of several nonlinear embedding mechanisms based on structured matrices that can be used to speed up: neural network computations, kernel methods applying random feature maps, convex optimization solvers, quantization and soft clustering methods as well as several LSH-based algorithms. With his background in structural graph theory, he is also interested in applying graph theory and other combinatorial methods in machine learning.
Authored Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance tradeoffs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and wholebody multimodality via extensive on-hardware experiments. We conclude with proposals on fusing “classical” and “learning-based” techniques for agile robot control. Videos of our experiments may be found here: https://sites.google.com/view/agile-catching. View details
    Robotic Table Tennis: A Case Study into a High Speed Learning System
    Jon Abelian
    Saminda Abeyruwan
    Michael Ahn
    Justin Boyd
    Erwin Johan Coumans
    Omar Escareno
    Wenbo Gao
    Navdeep Jaitly
    Juhana Kangaspunta
    Satoshi Kataoka
    Gus Kouretas
    Yuheng Kuang
    Corey Lynch
    Thinh Nguyen
    Ken Oslund
    Barney J. Reed
    Anish Shankar
    Avi Singh
    Grace Vesom
    Peng Xu
    Robotics: Science and Systems(2023)
    Preview abstract We present a deep-dive into a learning robotic system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized and novel perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description including numerous design decisions that are typically not widely disseminated, with a collection of ablation studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, and sensitivity to policy hyper-parameters and choice of action space. A video demonstrating the components of our system and details of experimental results is included in the supplementary material. View details
    Learning Model Predictive Controllers with Real-Time Attention for Real-World Navigation
    Anthony G. Francis
    Dmitry Kalashnikov
    Edward Lee
    Jake Varley
    Leila Takayama
    Mikael Persson
    Peng Xu
    Stephen Tu
    Xuesu Xiao
    Conference on Robot Learning(2022) (to appear)
    Preview abstract Despite decades of research, existing navigation systems still face real-world challenges when being deployed in the wild, e.g., in cluttered home environments or in human-occupied public spaces. To address this, we present a new class of implicit control policies combining the benefits of imitation learning with the robust handling of system constraints of Model Predictive Control (MPC). Our approach, called Performer-MPC, uses a learned cost function parameterized by vision context embeddings provided by Performers---a low-rank implicit-attention Transformer. We jointly train the cost function and construct the controller relying on it, effectively solving end-to-end the corresponding bi-level optimization problem. We show that the resulting policy improves standard MPC performance by leveraging a few expert demonstrations of the desired navigation behavior in different challenging real-world scenarios. Compared with a standard MPC policy, Performer-MPC achieves 40% better goal reached in cluttered environments and 65% better sociability when navigating around humans. View details
    Preview abstract Sim-to-real transfer is a powerful paradigm for robotic reinforcement learning. The ability to train policies in simulation enables safe exploration and large-scale data collection quickly at low cost. However, prior works in sim-to-real transfer of robotic policies typically do not involve any human-robot interaction because accurately simulating human behavior is an open problem. In this work, our goal is to leverage the power of simulation to train robotic policies that are proficient at interacting with humans upon deployment. This presents a chicken-and-egg problem --- how to gather examples of a human interacting with a physical robot so as to model human behavior in simulation without already having a robot that is able to interact with a human? Our proposed method, Iterative-Sim-to-Real i-S2R), attempts to address this. i-S2R bootstraps from a simple model of human behavior and alternates between training in simulation and deploying in the real world. In each iteration, both the human behavior model and the policy are improved. We evaluate our method on a real world robotic table tennis setting, where the objective for the robot is to play cooperatively with a human player for as long as possible. Table tennis is a high-speed, dynamic task that requires the two players to react quickly to each other’s moves, making for a challenging test bed for research on human-robot interaction. We present results on a physical industrial robotic arm that is able to cooperatively play table tennis against human players, achieving rallies of 22 successive hits on average and 150 at best. Further, for 80% of players, rally lengths are 70% to 175% longer compared to the sim-to-real (S2R) baseline. View details
    Preview abstract We present \textit{chefs' random tables} (CRTs), a new class of non-trigonometric random features (RFs) to approximate Gaussian and softmax kernels. CRTs are an alternative to standard random kitchen sink (RKS) methods, which inherently rely on the trigonometric maps. We present variants of CRTs where RFs are positive -- a critical requirement for prominent applications in recent low-rank Transformers. Further variance reduction is possible by leveraging statistics which are simple to compute. One instantiation of CRTs, the FAVOR++ mechanism, is to our knowledge the first RF method for unbiased softmax kernel estimation with positive \& bounded RFs, resulting in strong concentration results characterized by exponentially small tails, and much lower variance. As we show, orthogonal random features applied in FAVOR++ provide additional variance reduction for any dimensionality $d$ (not only asymptotically for sufficiently large $d$, as for RKS). We exhaustively test CRTs and FAVOR++ on tasks ranging from non-parametric classification to training Transformers for text, speech and image data, obtaining new SOTA for low-rank text Transformers, while providing linear space \& time complexity. View details
    Preview abstract Large pretrained (e.g., "foundation") models exhibit distinct capabilities depending on the domain of data they are trained on. While these domains are generic, they may only barely overlap. For example, visual-language models (VLMs) are trained on Internet-scale image captions, but large language models (LMs) are further trained on Internet-scale text with no images (e.g., spreadsheets, SAT questions, code). As a result, these models store different forms of commonsense knowledge across different domains. In this work, we show that this diversity is symbiotic, and can be leveraged through Socratic Models (SMs): a modular framework in which multiple pretrained models may be composed zero-shot i.e., via multimodal-informed prompting, to exchange information with each other and capture new multimodal capabilities, without requiring finetuning. With minimal engineering, SMs are not only competitive with state-of-the-art zero-shot image captioning and video-to-text retrieval, but also enable new applications such as (i) answering free-form questions about egocentric video, (ii) engaging in multimodal assistive dialogue with people (e.g., for cooking recipes) by interfacing with external APIs and databases (e.g., web search), and (iii) robot perception and planning. Prototypes are available at socraticmodels.github.io View details
    Hybrid Random Features
    Haoxian Chen
    Han Lin
    Yuanzhe Ma
    Arijit Sehanobish
    Michael Ryoo
    Jake Varley
    Andy Zeng
    Valerii Likhosherstov
    Dmitry Kalashnikov
    Adrian Weller
    International Conference on Learning Representations (ICLR)(2022)
    Preview abstract We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs) that automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest. Special instantiations of HRFs lead to well-known methods such as trigonometric (Rahimi & Recht, 2007) or (recently introduced in the context of linear-attention Transformers) positive random features (Choromanski et al., 2021b). By generalizing Bochner’s Theorem for softmax/Gaussian kernels and leveraging random features for compositional kernels, the HRF-mechanism provides strong theoretical guarantees - unbiased approximation and strictly smaller worst-case relative errors than its counterparts. We conduct exhaustive empirical evaluation of HRF ranging from pointwise kernel estimation experiments, through tests on data admitting clustering structure to benchmarking implicit-attention Transformers (also for downstream Robotics applications), demonstrating its quality in a wide spectrum of machine learning problems. View details
    Sub-Linear Memory: How to Make Performers SLiM
    Valerii Likhosherstov
    Jared Davis
    Adrian Weller
    NeurIPS 2021
    Preview abstract The Transformer architecture has revolutionized deep learning on sequential data, becoming ubiquitous in state-of-the-art solutions for a wide variety of applications. Yet vanilla Transformers are notoriously resource-expensive, requiring O(L^2) in serial time and memory as functions of input length L. Recent works proposed various linear self-attention mechanisms, scaling only as O(L) for serial computation. We perform a thorough analysis of recent Transformer mechanisms with linear self-attention, Performers, in terms of overall computational complexity. We observe a remarkable computational flexibility: forward and backward propagation can be performed with no approximations using sub-linear memory as a function of L (in addition to negligible storage for the input sequence), at a cost of greater time complexity in the parallel setting. In the extreme case, a Performer consumes only O(1) memory during training, and still requires O(L) time. This discovered time-memory tradeoff can be used for training or, due to complete backward-compatibility, for fine-tuning on a low-memory device, e.g. a smartphone or an earlier-generation GPU, thus contributing towards decentralized and democratized deep learning. View details
    Catformer: Designing Stable Transformers via Sensitivity Analysis
    Jared Quincy Davis
    Albert Gu
    Tri Dao
    Christopher Re
    Chelsea Finn
    Percy Liang
    Thirty-eighth International Conference on Machine Learning (ICML 2021)
    Preview abstract Transformer architectures are widely used, but training them is non-trivial, requiring custom learning rate schedules, scaling terms, residual connections, careful placement of submodules such as normalization, and so on. In this paper, we improve upon recent analysis of Transformers and formalize a notion of sensitivity to capture the difficulty of training. Sensitivity characterizes how the variance of activation and gradient norms change in expectation when parameters are randomly perturbed. We analyze the sensitivity of previous Transformer architectures and design a new architecture, the Catformer, which replaces residual connections or RNN-based gating mechanisms with concatenation. We prove that Catformers are less sensitive than other Transformer variants and demonstrate that this leads to more stable training. On DMLab30, a suite of high-dimension reinforcement tasks, Catformer outperforms other transformers, including Gated Transformer-XL—the state-of-the-art architecture designed to address stability—by 13%. View details
    Debiasing a First-order Heuristic for Approximate Bi-level Optimization
    Valerii Likhosherstov
    Jared Davis
    Adrian Weller
    Thirty-eighth International Conference on Machine Learning (ICML 2021)
    Preview abstract Approximate bi-level optimization (ABLO) consists of (outer-level) optimization problems, involving numerical (inner-level) optimization loops. While ABLO has many applications across deep learning, it suffers from time and memory complexity proportional to the length r of its inner optimization loop. To address this complexity, an earlier first-order method (FOM) was proposed as a heuristic that omits second derivative terms, yielding significant speed gains and requiring only constant memory. Despite FOM's popularity, there is a lack of theoretical understanding of its convergence properties. We contribute by theoretically characterizing FOM's gradient bias under mild assumptions. We further demonstrate a rich family of examples where FOM-based SGD does not converge to a stationary point of the ABLO objective. We address this concern by proposing an unbiased FOM (UFOM) enjoying constant memory complexity as a function of r. We characterize the introduced time-variance tradeoff, demonstrate convergence bounds, and find an optimal UFOM for a given ABLO problem. Finally, we propose an efficient adaptive UFOM scheme. View details