Jump to Content
Kushal Chauhan

Kushal Chauhan

I am a Research Software Engineer at Google Research working with Dr. Aravindan Raghuveer on privacy preserving deep learning. Before this, I was a Pre-Doctoral Researcher at Google Research, where I worked with Dr. Pradeep Shenoy on robust and interpretable deep learning.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, desc
  • Year
  • Year, desc
    Preview abstract Reliable outlier detection is critical for real-world applications of deep learning models. Likelihoods produced by deep generative models, although extensively studied, have been largely dismissed as being impractical for outlier detection. For one, deep generative model likelihoods are readily biased by low-level input statistics. Second, many recent solutions for correcting these biases are computationally expensive or do not generalize well to complex, natural datasets. Here, we explore outlier detection with a state-of-the-art deep autoregressive model: PixelCNN++. We show that biases in PixelCNN++ likelihoods arise primarily from predictions based on local dependencies. We propose two families of bijective transformations that we term “shaking” and “stirring”, which ameliorate low-level biases and isolate the contribution of long-range dependencies to the PixelCNN++ likelihood. These transformations are computationally inexpensive and readily applied at evaluation time. We evaluate our approaches extensively with five grayscale and six natural image datasets and show that they achieve or exceed state-of-the-art outlier detection performance. In sum, lightweight remedies suffice to achieve robust outlier detection on images with deep autoregressive models. View details
    Preview abstract The options framework in Hierarchical Reinforcement Learning breaks down overall goals into a combination of options or simpler tasks and associated policies, allowing for abstraction in the action space. Ideally, these options can be reused across different higher-level goals; indeed, many previous approaches have proposed limited forms of transfer of prelearned options to new task settings. We propose a novel "option indexing" approach to hierarchical learning (OI-HRL), where we learn an affinity function between options and the functionalities (or affordances) supported by the environment. This allows us to effectively reuse a large library of pretrained options, in zero-shot generalization at test time, by restricting goal-directed learning to only those options relevant to the task at hand. We develop a meta-training loop that learns the representations of options and environment affordances over a series of HRL problems, by incorporating feedback about the relevance of retrieved options to the higher-level goal. In addition to a substantial decrease in sample complexity compared to learning HRL policies from scratch, we also show significant gains over baselines that have the entire option pool available for learning the hierarchical policy. View details
    Preview abstract Concept bottleneck models (CBMs) (Koh et al. 2020) are interpretable neural networks that first predict labels for human-interpretable concepts relevant to the prediction task, and then predict the final label based on the concept label predictions. We extend CBMs to interactive prediction settings where the model can query a human collaborator for the label to some concepts. We develop an interaction policy that, at prediction time, chooses which concepts to request a label for so as to maximally improve the final prediction. We demonstrate that a simple policy combining concept prediction uncertainty and influence of the concept on the final prediction achieves strong performance and outperforms a static approach proposed in Koh et al. (2020) as well as active feature acquisition methods proposed in the literature. We show that the interactive CBM can achieve accuracy gains of 5-10% with only 5 interactions over competitive baselines on the Caltech UCSB Birds dataset and the Chexpert dataset. View details
    Preview abstract Deep networks often make confident, yet, incorrect, predictions when tested with outlier data that is far removed from their training distributions. Likelihoods computed by deep generative models (DGMs) are a candidate metric for outlier detection with unlabeled data. Yet, previous studies have shown that DGM likelihoods are unreliable and can be easily biased by simple transformations to input data. Here, we examine outlier detection with variational autoencoders (VAEs), among the simplest of DGMs. We propose novel analytical and algorithmic approaches to ameliorate key biases with VAE likelihoods. Our bias corrections are sample-specific, computationally inexpensive, and readily computed for various decoder visible distributions. Next, we show that a well-known image pre-processing technique – contrast stretching – extends the effectiveness of bias correction to further improve outlier detection. Our approach achieves state-of-the-art accuracies with nine grayscale and natural image datasets, and demonstrates significant advantages – both with speed and performance – over four recent, competing approaches. In summary, lightweight remedies suffice to achieve robust outlier detection with VAEs. View details
    No Results Found