# Balasubramanian Sivan

Balasubramanian Sivan is a Research Scientist at Google New York. His research interests are in Algorithmic Game Theory, Online + Approximation algorithms and Online Learning. He got his undergraduate degree in Computer Science from Indian Institute of Technology Madras (2008) and PhD in Computer Science (2013) from the University of Wisconsin-Madison advised by Prof. Shuchi Chawla, and joined Google in August 2015 after spending two years at Microsoft Research Redmond as a postdoctoral researcher. His PhD thesis on Prior Robust Optimization received the ACM SIGecom doctoral dissertation award.
See his personal webpage http://pages.cs.wisc.edu/~balu2901/ for more details on his publications.

### Research Areas

Authored Publications

Google Publications

Other Publications

Sort By

Welfare-maximizing Guaranteed Dashboard Mechanisms

Jason Hartline

Jieming Mao

Proceedings of the 22nd ACM Conference on Economics and Computation (2021), pp. 370

Preview abstract
Bidding dashboards are used in online marketplaces to aid a bidder in computing good bidding strategies, particularly when the auction used by the marketplace is constrained to have the winners-pay-bid payment format. A dashboard predicts the outcome a bidder can expect to get at each possible bid. To convince a bidder to best respond to the information published in a dashboard, a dashboard mechanism should ensure either (a) that best responding maximizes the bidder's utility (a weaker requirement) or (b) that the mechanism implements the outcome published in the dashboard (a stronger requirement that subsumes (a)). Recent work by Hartline et al. EC'19 formalized the notion of dashboard mechanisms and designed winners-pay-bid mechanisms that guaranteed epsilon-optimal utility (an epsilon-approximate version of (a)), but not (b). I.e., the mechanism could end up implementing arbitrarily different outcomes from what was promised. While this guarantee is sufficient from a purely technical perspective, it is far from enough in the real world: it is hard to convince bidders to best respond to information which could be arbitrarily inaccurate, regardless of the theoretical promise of near-optimality. In this paper we study guaranteed dashboard mechanisms, namely, ones that are guaranteed to implement what they publish, and obtain good welfare. We study this question in a repeated auction setting for general single-dimensional valuations and give tight characterizations of the loss in welfare as a function of natural parameters upper bounding the difference in valuation profile across the rounds. In particular, we give three different characterizations, bounding the loss in welfare in terms of the 0 norm, 1 norm and infinite norm of difference in valuation profile across rounds. All the characterizations generalize at least up to matroid feasibility constraints, and the infinite norm characterization extends to general downward-closed feasibility constraints. We bring to bear different techniques for each of these characterizations, including connections to differential privacy and online convex optimizations.
View details

Improved Approximations for Posted Price and Second-price Mechanisms

Hedyeh Beyhaghi

Martin Pál

Negin Golrezaei

Operations Research (2020)

Preview abstract
We study the fundamental problem of selling a single indivisible good to one ofnbuyers with independentvaluations. We seek to design improved approximations to the optimal revenue achievable through two simpleand widely used mechanisms: second price auction with eager personalized reserve prices, and sequentialposted price mechanisms. Until recently, the best known approximation for both these mechanisms was 1−1e.We give improved approximations of 1−1e+0.022∼0.6543 for the sequential posted price mechanism and1−1e+0.029∼0.662 for the second price auction with eager reserve prices. We also make some progresstowards the problem of computing the optimal personalized eager reserve prices for a second price auction.
View details

Prior-Free Dynamic Auctions with Low Regret Buyers

Advances in Neural Information Processing Systems (2019), pp. 4803-4813

Preview abstract
We study the problem of how to repeatedly sell to a buyer running a no-regret, mean-based algorithm. Previous work (Braverman et al., EC '18) shows that it is possible to design effective mechanisms in such a setting that extract almost all of the economic surplus, but these mechanisms require the buyer's values each round to be drawn iid from a fixed distribution. In this paper, we do away with this assumption and consider the {\it prior-free setting} where the buyer's value each round is chosen adversarially (possibly adaptively).
We show that even in this prior-free setting, it is possible to extract a $(1-\varepsilon)$-approximation of the full economic surplus for any $\varepsilon > 0$. The menu complexity of our mechanism (the number of options offered to a buyer in any round) scales independently of the number of rounds $T$ and polynomially in $\varepsilon$. We show that this is optimal up to a polynomial factor; any mechanism achieving this approximation factor, even when values are drawn stochastically, requires menu complexity at least $\Omega(1/\varepsilon)$.
Finally, we examine what is possible when we constrain our mechanism to a natural auction format where overbidding is dominated. Braverman et al. show that even when values are drawn from a known stochastic distribution supported on $[1/H, 1]$, it is impossible in general to extract more than $O(\log\log H / \log H)$ of the economic surplus. We show how to achieve the same approximation factor in the {\it prior-independent} setting (where the distribution is unknown to the seller), and an approximation factor of $O(1 / \log H)$ in the prior-free setting.
View details

Strategizing against No-regret Learners

Advances in Neural Information Processing Systems (2019), pp. 1579-1587

Preview abstract
How should a player who repeatedly plays a game against a no-regret learner strategize to maximize his utility? We study this question and show that under some mild assumptions, the player can always guarantee himself a utility of at least what he would get in a Stackelberg equilibrium of the game. When the no-regret learner has only two actions, we show that the player cannot get any higher utility than the Stackelberg equilibrium utility. But when the no-regret learner has more than two actions and plays a mean-based no-regret strategy, we show that the player can get strictly higher than the Stackelberg equilibrium utility. We provide a characterization of the optimal game-play for the player against a mean-based no-regret learner as a solution to a control problem. When the no-regret learner's strategy also guarantees him a no-swap regret, we show that the player cannot get anything higher than a Stackelberg equilibrium utility.
View details

Testing Incentive Compatibility in Display Ad Auctions

Sebastien Lahaie

Andres Munoz Medina

Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018

Preview abstract
Consider a buyer participating in a repeated auction, such as those
prevalent in display advertising. How would she test whether the
auction is incentive compatible? To bid effectively, she is
interested in whether the auction is single-shot incentive
compatible---a pure second-price auction, with fixed reserve
price---and also dynamically incentive compatible---her bids
are not used to set future reserve prices. In this work we develop
tests based on simple bid perturbations that a buyer can use to
answer these questions, with a focus on dynamic incentive
compatibility.
There are many potential A/B testing setups that one could use, but
we find that many natural experimental designs are, in fact, flawed.
For instance, we show that additive perturbations can lead to paradoxical results,
where higher bids lead to lower optimal reserve prices. We precisely
characterize this phenomenon and show that reserve prices are only
guaranteed to be monotone for distributions satisfying the Monotone
Hazard Rate (MHR) property. The experimenter must also decide how to split traffic to apply
systematic perturbations. It is tempting to have this split be
randomized, but we demonstrate empirically that unless the perturbations are
aligned with the partitions used by the seller to compute
reserve prices, the results are guaranteed to be inconclusive.
We validate our results with experiments on real display auction
data and show that a buyer can quantify both single-shot and dynamic
incentive compatibility even under realistic conditions where only
the cost of the impression is observed (as opposed to the exact
reserve price). We analyze the cost of running such experiments,
exposing trade-offs between test accuracy, cost, and underlying
market dynamics.
View details

Robust Repeated Auctions Under Heterogeneous Buyer Behavior

Shipra Agrawal

Constantinos Daskalakis

Proceedings of the Nineteenth ACM Conference on Economics and Computation, EC '18 (2018)

Preview abstract
We study revenue optimization in a repeated auction between a single seller and a single buyer. Traditionally, the design of repeated auctions requires strong modeling assumptions about the bidder behavior, such as it being myopic, infinite lookahead, or some specific form of learning behavior. Is it possible to design mechanisms which are simultaneously optimal against a multitude of possible buyer behaviors? We answer this question by designing a simple state-based mechanism that is simultaneously approximately optimal against a k-lookahead buyer for all k, a buyer who is a no-regret learner, and a buyer who is a policy-regret learner. Against each type of buyer our mechanism attains a constant fraction of the optimal revenue attainable against that type of buyer. We complement our positive results with almost tight impossibility results, showing that the revenue approximation tradeoffs achieved by our mechanism for different lookahead attitudes are near-optimal.
View details

Truthful Multi-Parameter Auctions with Online Supply: An Impossible Combination

Nikhil R. Devanur

Vasilis Syrgkanis

Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018

Preview abstract
We study a basic auction design problem with online supply. There are two unit-demand bidders and two types of items. The first item type will arrive first for sure, and the second item type may or may not arrive. The auctioneer has to decide the allocation of an item immediately after each item arrives, but is allowed to compute payments after knowing how many items arrived. For this problem we show that there is no deterministic truthful and individually rational mechanism that, even with unbounded computational resources, gets any finite approximation factor to the optimal social welfare.
View details

Tight Lower Bounds for Multiplicative Weights Algorithmic Families

Nick Gravin

Yuval Peres

44th International Colloquium on Automata, Languages, and Programming, ICALP 2017

Preview abstract
We study the fundamental problem of prediction with expert advice and develop
regret lower bounds for a large family of algorithms for this problem. We
develop simple adversarial primitives, that lend themselves to various
combinations leading to sharp lower bounds for many algorithmic families. We use
these primitives to show that the classic Multiplicative Weights Algorithm (MWA)
has a regret of $\sqrt{\frac{T \ln k}{2}}$ (where T is the time horizon and
k is the number of experts), there by completely closing the gap between upper
and lower bounds. We further show a regret lower bound of
$\frac{2}{3}\sqrt{\frac{T\ln k}{2}}$ for a much more general family of
algorithms than MWA, where the learning rate can be arbitrarily varied over
time, or even picked from arbitrary distributions over time. We also use our
primitives to construct adversaries in the geometric horizon setting for MWA to
precisely characterize the regret at $\frac{0.391}{\sqrt{\delta}}$ for the case
of 2 experts and a lower bound of $\frac{1}{2}\sqrt{\frac{\ln k}{2\delta}}$
for the case of arbitrary number of experts k (here $\delta$ is the
probability that the game ends in any given round).
View details

Stability of Service Under Time-of-use Pricing

Shuchi Chawla

Nikhil R. Devanur

Alexander E. Holroyd

Anna R. Karlin

James B. Martin

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017

Preview abstract
We consider time-of-use pricing as a technique for matching supply and demand of temporal resources with the goal of maximizing social welfare. Relevant examples include energy, computing resources on a cloud computing platform, and charging stations for electric vehicles, among many others. A client/job in this setting has a window of time during which he needs service, and a particular value for obtaining it. We assume a stochastic model for demand, where each job materializes with some probability via an independent Bernoulli trial. Given a per-time-unit pricing of resources, any realized job will first try to get served by the cheapest available resource in its window and, failing that, will try to find service at the next cheapest available resource, and so on. Thus, the natural stochastic fluctuations in demand have the potential to lead to cascading overload events. Our main result shows that setting prices so as to optimally handle the expected demand works well: with high probability, when the actual demand is instantiated, the system is stable and the expected value of the jobs served is very close to that of the optimal offline algorithm.
View details

Simple Pricing Schemes for Consumers with Evolving Values

Shuchi Chawla

Nikhil R. Devanur

Anna R. Karlin

Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016

Preview abstract
We consider a pricing problem where a buyer is interested in purchasing/using a good, such as an app or music or software, repeatedly over time. The consumer discovers his value for the good only as he uses it, and the value evolves with each use. Optimizing for the seller's revenue in such dynamic settings is a complex problem and requires assumptions about how the buyer behaves before learning his future value(s), and in particular, how he reacts to risk. We explore the performance of a class of pricing mechanisms that are extremely simple for both the buyer and the seller to use: the buyer reacts to prices myopically without worrying about how his value evolves in the future; the seller needs to optimize for revenue over a space of only two parameters, and can do so without knowing the buyer's risk profile or fine details of the value evolution process. We present simple-versus-optimal type results, namely that under certain assumptions, simple pricing mechanisms of the above form are approximately optimal regardless of the buyer's risk profile.
Our results assume that the buyer's value per usage evolves as a martingale. For our main result, we consider pricing mechanisms in which the seller offers the product for free for a certain number of uses, and then charges an appropriate fixed price per usage. We assume that the buyer responds by buying the product for as long as his value exceeds the fixed price. Importantly, the buyer does not need to know anything about how his future value will evolve, only how much he wants to use the product right now. Regardless of the buyers' initial value, our pricing captures as revenue a constant fraction of the total value that the buyers accumulate in expectation over time.
View details

Multi-Score Position Auctions

Denis Charles

Nikhil R. Devanur

Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM 2016

Preview abstract
In this paper we propose a general family of position auctions used in paid search, which we call multi-score position auctions. These auctions contain the GSP auction and the GSP auction with squashing as special cases. We show experimentally that these auctions contain special cases that perform better than the GSP auction with squashing, in terms of revenue, and the number of clicks on ads. In particular, we study in detail the special case that squashes the first slot alone and show that this beats pure squashing (which squashes all slots uniformly). We study the equilibria that arise in this special case to examine both the first order and the second order effect of moving from the squashing-all-slots auction to the squash-only-the-top-slot auction. For studying the second order effect, we simulate auctions using the value-relevance correlated distribution suggested in Lahaie and Pennock [2007]. Since this distribution is derived from a study of value and relevance distributions in Yahoo! we believe the insights derived from this simulation to be valuable. For measuring the first order effect, in addition to the said simulation, we also conduct experiments using auction data from Bing over several weeks that includes a random sample of all auctions.
View details

Towards Optimal Algorithms for Prediction with Expert Advice

Nick Gravin

Yuval Peres

Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016

Preview abstract
We study the classical problem of prediction with expert advice in the
adversarial setting with a geometric stopping time. In
1965, Cover'65 gave the optimal algorithm for the case of 2
experts. In this paper, we design the optimal algorithm, adversary and regret
for the case of 3 experts. Further, we show that the optimal algorithm for 2
and 3 experts is a probability matching algorithm (analogous to Thompson
sampling) against a particular randomized adversary. Remarkably, our proof
shows that the probability matching algorithm is not only optimal against this
particular randomized adversary, but also minimax optimal.
Our analysis develops upper and lower bounds simultaneously, analogous to the
primal-dual method. Our analysis of the optimal adversary goes through delicate
asymptotics of the random walk of a particle between multiple walls. We use the
connection we develop to random walks to derive an improved algorithm and
regret bound for the case of 4 experts, and, provide a general framework for
designing the optimal algorithm and adversary for an arbitrary number of
experts.
View details

Revenue Maximization with Nonexcludable Goods

Preview
Nima Haghpanah

Transactions on Economics and Computation (2015)

Revenue Maximization with Nonexcludable Goods

Preview
Nima Haghpanah

Internet and Network Economics - 9th International Workshop, WINE 2013, Springer

Multi-parameter Mechanism Design and Sequential Posted Pricing

Shuchi Chawla

Jason D. Hartline

David Malec

Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010., ACM (2010), pp. 311-320