Publications
Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.
Sort By
1 - 15 of 10465 publications
Preview abstract
This tutorial examines the progress and scaling limitations of IM-DD based optical technologies and explores how datacenter use cases optimized coherent technology, including a newly proposed polarization-folding, time-diversity approach and a novel single-sideband coherent detection technology—can address some of these challenges
View details
Perceptual Audio Coding: A 40-Year Historical Perspective
Juergen Herre
Schuyler Quackenbush
Minje Kim
2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2025)
Preview abstract
In the history of audio and acoustic signal processing perceptual audio coding has certainly excelled as a bright success story by its ubiquitous deployment in virtually all digital media devices, such as computers, tablets, mobile phones, set-top-boxes, and digital radios. From a technology perspective, perceptual audio coding has undergone tremendous development from the first very basic perceptually driven coders (including the popular mp3 format) to today’s full-blown integrated coding/rendering systems. This paper provides a historical overview of this research journey by pinpointing the pivotal development steps in the evolution of perceptual audio coding. Finally, it provides thoughts about future directions in this area.
View details
Fast ACS: Low-Latency File-Based Ordered Message Delivery at Scale
Anil Raghunath Iyer
Neel Bagora
Chang Yu
Olivier Pomerleau
Vivek Kumar
Prunthaban Kanthakumar
Usenix Annual Technical Conference (2025)
Preview abstract
Low-latency message delivery is crucial for real-time systems. Data originating from a producer must be delivered to consumers, potentially distributed in clusters across metropolitan and continental boundaries. With the growing scale of computing, there can be several thousand consumers of the data. Such systems require a robust messaging system capable of transmitting messages containing data across clusters and efficiently delivering them to consumers. The system must offer guarantees like ordering and at-least-once delivery while avoiding overload on consumers, allowing them to consume messages at their own pace.
This paper presents the design of Fast ACS (an abbreviation for Ads Copy Service), a file-based ordered message delivery system that leverages a combination of two-sided (inter-cluster) and one-sided (intra-cluster) communication primitives—namely, Remote Procedure Call and Remote Direct Memory Access, respectively—to deliver messages. The system has been successfully deployed to dozens of production clusters and scales to accommodate several thousand consumers within each cluster, which amounts to Tbps-scale intra-cluster consumer traffic at peak. Notably, Fast ACS delivers messages to consumers across the globe within a few seconds or even sub-seconds (p99) based on the message volume and consumer scale, at a low resource cost.
View details
Preview abstract
Judging an action’s safety requires knowledge of the context in which the action takes place. To human agents who act in various contexts, this may seem obvious: performing an action such as email deletion may or may not be appropriate depending on the email’s content, the goal (e.g., to erase sensitive emails or to clean up trash), and the type of email address (e.g., work or personal). Unlike people, computational systems have often had only limited agency in limited contexts. Thus, manually crafted policies and user confirmation (e.g., smartphone app permissions or network access control lists), while imperfect, have sufficed to restrict harmful actions. However, with the upcoming deployment of generalist agents that support a multitude of tasks (e.g., an automated personal assistant), we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual agent security (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
View details
Deletion Robust Non-Monotone Submodular Maximization over Matroids
Paul Duetting
Federico Fusco
Ashkan Norouzi Fard
Journal of Machine Learning Research, 26 (2025), pp. 1-28
Preview abstract
Maximizing a submodular function is a fundamental task in machine learning and in this paper we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(4.597+O(\eps))$-approximation algorithm with summary size $O( \frac{k+d}{\eps^2}\log \frac{k}{\eps})$ that is improved to a $(3.582+O(\eps))$-approximation with $O(k + \frac{d}{\eps^2}\log \frac{k}{\eps})$ summary size when the objective is monotone. In the streaming setting we provide a $(9.435 + O(\eps))$-approximation algorithm with summary size and memory $O(k + \frac{d}{\eps^2}\log \frac{k}{\eps})$; the approximation factor is then improved to $(5.582+O(\eps))$ in the monotone case.
View details
Binamix -- A Python Library for Generating Binaural Audio Datasets
Dan Barry
Davoud Shariat Panah
Alessandro Ragano
Andrew Hines
AES 158th Audio Engineering Society Convention (2025)
Preview abstract
The increasing demand for spatial audio in applications such as virtual reality, immersive media, and spatial audio research necessitates robust solutions to generate binaural audio data sets for use in testing and validation. Binamix is an open-source Python library designed to facilitate programmatic binaural mixing using the extensive SADIE II Database, which provides Head Related Impulse Response (HRIR) and Binaural Room Impulse Response (BRIR) data for 20 subjects. The Binamix library provides a flexible and repeatable framework for creating large-scale spatial audio datasets, making it an invaluable resource for codec evaluation, audio quality metric development, and machine learning model training. A range of pre-built example scripts, utility functions, and visualization plots further streamline the process of custom pipeline creation. This paper presents an overview of the library’s capabilities, including binaural rendering, impulse response interpolation, and multi-track mixing for various speaker layouts. The tools utilize a modified Delaunay triangulation technique to achieve accurate HRIR/BRIR interpolation where desired angles are not present in the data. By supporting a wide range of parameters such as azimuth, elevation, subject Impulse Responses (IRs), speaker layouts, mixing controls, and more, the library enables researchers to create large binaural datasets for any downstream purpose. Binamix empowers researchers and developers to advance spatial audio applications with reproducible methodologies by offering an open-source solution for
binaural rendering and dataset generation. We release the library under the Apache 2.0 License at https://github.com/QxLabIreland/Binamix/
View details
Toward Sensor-In-the-Loop LLM Agent: Benchmarks and Implications
Zhiwei Ren
Junbo Li
Minjia Zhang
Di Wang
Longfei Shangguan
SenSys 2025 - The 23rd ACM Conference on Embedded Networked Sensor Systems (2025)
Preview abstract
This paper advocates for sensor-informed personal agents that can take advantage of sensor hints on wearables to enhance the personal agent's response. We demonstrate that such a sensor-in-the-loop design paradigm can be easily integrated into existing LLM agents by building a prototype named WellMax based on existing well-developed techniques such as structured prompt tuning and few-shot prompting. The head-to-head comparison with a non-sensor-informed agent across five use scenarios demonstrates that this sensor-in-the-loop design can effectively improve users' needs and their overall experience. The deep-dive into agents' replies and participants' feedback further reveals that sensor-in-the-loop agents not only provide more contextually relevant responses but also exhibit a greater understanding of user priorities and situational nuances. We further conduct two case studies to examine the potential pitfalls and distill key insights from this sensor-in-the-loop agent. We believe this work sets the stage for more intelligent, empathetic, and effective interactions in future AI-driven personal assistants.
View details
Procurement Auctions via Approximate Submodular Optimization
Amin Karbasi
Grigoris Velegkas
Forty-second International Conference on Machine Learning (2025)
Preview abstract
We study the problem of procurement auctions, in which an auctioneer seeks to acquire services from a group of strategic sellers with private costs. The quality of the services is measured through some \emph{submodular} function that is known to the auctioneer. Our goal is to design \emph{computationally efficient} procurement auctions that (approximately) maximize the difference between the quality of the acquired services and the total cost of the sellers, in a way that is incentive compatible (IC) and individual rational (IR) for the sellers, and generates non-negative surplus (NAS) for the auctioneer.
Leveraging recent results from the literature of \emph{non-positive} submodular function maximization, we design computationally efficient frameworks that transform submodular function optimization algorithms to \emph{mechanisms} that are IC and IR for the sellers, NAS for the auctioneer, and \emph{approximation-preserving}. Our frameworks are general and work both in the \emph{offline} setting where the auctioneer can observe the bids and the services of all the sellers simultaneously, and in the \emph{online} setting where the sellers arrive in an adversarial order and the auctioneer has to make an irrevocable decision whether to purchase their service or not. We further investigate whether it is possible to convert state-of-art submodular optimization algorithms into a descending auction. We focurs in the adversarial setting, meaning that the schedule of the descending prices is determined by an advesary. We show that a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare can be effectively converted to a descending auction in the adversarial setting in if and only if $\alpha \leq \frac 1 2$. Our result highlights the importance of a carefully designed schedule of descending prices to effectively convert a submodular optimization algorithm satisfying bi-criteria $(\alpha, 1)$-approximation in welfare with $\alpha > \frac 1 2$ to a descending auction. We also further establish a connection between descending auctions and online submodular optimization algorithms.
We demonstrate the practical applications of our frameworks by instantiating them with different state-of-the-art submodular optimization algorithms and comparing their welfare performance through empirical experiments on publicly available datasets that consist of thousands of sellers.
View details
Avoid global outages by partitioning cloud applications to reduce blast radius
Karan Anand
https://cloud.google.com/ (2025)
Preview abstract
Cloud application development faces the inherent challenge of balancing rapid innovation with high availability. This blog post details how Google Workspace's Site Reliability Engineering team addresses this conflict by implementing vertical partitioning of serving stacks. By isolating application servers and storage into distinct partitions, the "blast radius" of code changes and updates is significantly reduced, minimizing the risk of global outages. This approach, which complements canary deployments, enhances service availability, provides flexibility for experimentation, and facilitates data localization. While challenges such as data model complexities and inter-service partition misalignment exist, the benefits of improved reliability and controlled deployments make partitioning a crucial strategy for maintaining robust cloud applications
View details
InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
Jing Jin
Xiuxiu Yuan
Jun Jiang
Jingtao Zhou
Yiyi Huang
Zheng Xu
Kristen Wright
Jason Mayes
Mark Sherwood
Johnny Lee
Alex Olwal
Ram Iyengar
Na Li
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI), ACM, pp. 23
Preview abstract
Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas.
View details
Global earthquake detection and warning using Android phones
Marc Stogaitis
Youngmin Cho
Richard Allen
Boone Spooner
Patrick Robertson
Micah Berman
Greg Wimpey
Robert Bosch
Nivetha Thiruverahan
Steve Malkos
Alexei Barski
Science, 389 (2025), pp. 254-259
Preview abstract
Earthquake early-warning systems are increasingly being deployed as a strategy to reduce losses in earthquakes, but the regional seismic networks they require do not exist in many earthquake-prone countries. We use the global Android smartphone network to develop an earthquake detection capability, an alert delivery system, and a user feedback framework. Over 3 years of operation, the system detected an average of 312 earthquakes per month with magnitudes from M 1.9 to M 7.8 in Türkiye. Alerts were delivered in 98 countries for earthquakes with M ≥4.5, corresponding to ~60 events and 18 million alerts per month. User feedback shows that 85% of people receiving an alert felt shaking, and 36, 28, and 23% received the alert before, during, and after shaking, respectively. We show how smartphone-based earthquake detection algorithms can be implemented at scale and improved through postevent analysis.
View details
AI and Generative AI Transforming Disaster Management: A Survey of Damage Assessment and Response Techniques
Aman Raj
Shashank Kapoor
IEEE Compsac 2025 (2025)
Preview abstract
Natural disasters, including earthquakes, wildfires and cyclones, bear a huge risk on human lives as well as infrastructure assets. An effective response to disaster depends on the ability to rapidly and efficiently assess the intensity of damage. Artificial Intelligence (AI) and Generative Artificial Intelligence (GenAI) presents a breakthrough solution, capable of combining knowledge from multiple types and sources of data, simulating realistic scenarios of disaster, and identifying emerging trends at a speed previously unimaginable. In this paper, we present a comprehensive review on the prospects of AI and GenAI in damage assessment for various natural disasters, highlighting both its strengths and limitations. We talk about its application to multimodal data such as text, image, video, and audio, and also cover major issues of data privacy, security, and ethical use of the technology during crises. The paper also recognizes the threat of Generative AI misuse, in the form of dissemination of misinformation and for adversarial attacks. Finally, we outline avenues of future research, emphasizing the need for secure, reliable, and ethical Generative AI systems for disaster management in general. We believe that this work represents the first comprehensive survey of Gen-AI techniques being used in the field of Disaster Assessment and Response.
View details
Preview abstract
Large language models (LLMs), optimized through human feedback, have rapidly emerged as a leading paradigm for developing intelligent conversational assistants. However, despite their strong performance across many benchmarks, LLM-based agents might still lack conversational skills such as disambiguation -- when they are faced with ambiguity, they often overhedge or implicitly guess users' true intents rather than asking clarification questions. Under task-specific settings, high-quality conversation samples are often limited, constituting a bottleneck for LLMs' ability to learn optimal dialogue action policies. We propose Action-Based Contrastive Self-Training (ACT), a quasi-online preference optimization algorithm based on Direct Preference Optimization (DPO), that enables data-efficient dialogue policy learning in multi-turn conversation modeling. We demonstrate ACT's efficacy under data-efficient tuning scenarios, even when there is no action label available, using multiple real-world conversational tasks: tabular-grounded question-answering, machine reading comprehension, and AmbigSQL, a novel task for disambiguating information-seeking requests for complex SQL generation towards data analysis agents. Additionally, we propose evaluating LLMs' ability to function as conversational agents by examining whether they can implicitly recognize and reason about ambiguity in conversation. ACT demonstrates substantial conversation modeling improvements over standard tuning approaches like supervised fine-tuning and DPO.
View details
PROTECT: A Framework to Foster Digital Resilience for Youth Navigating Technology-Facilitated Abuse
Diana Freed
Natalie Bazarova
Dan Cosley
Patrick Gage Kelley
Social Sciences Journal, 14(6) (2025)
Preview abstract
Youth are increasingly exposed to a broad range of technology-facilitated abuse that challenges their safety and well-being. Building on previous work that examined youth help-seeking behaviors, coping strategies, threats they encounter, and the social support systems around them, we articulate a framework— called PROTECT—Problem recognition, Reaching out, Organizing support, Training, Engaging experts, Continuous support, and Tackling safety measures—which integrates existing models of support, help-seeking, and digital skills to offer a high-level, structured approach to adults who serve as a support system to youth navigate technology-facilitated abuse. The framework unpacks social and contextual dynamics that influence help-seeking behaviors, providing a foundation for educators, advocates, health professionals, developers and other adult stakeholders to design and develop trauma-informed, timely interventions to promote resilience.
View details
Confidence Improves Self-Consistency in LLMs
Tom Sheffer
Eran Ofek
Ariel Goldstein
Zorik Gekhman
ACL 2025, Findings (2025)
Preview abstract
Self-consistency decoding enhances LLMs’ performance on reasoning tasks by sampling diverse reasoning paths and selecting the most frequent answer. However, it is computationally expensive, as sampling many of these (lengthy) paths is required to increase the chances that the correct answer emerges as the most frequent one. To address this, we introduce Confidence-Informed Self-Consistency (CISC). CISC performs a weighted majority vote based on confidence scores obtained directly from the model. By prioritizing high-confidence paths, it can identify the correct answer with a significantly smaller sample size. When tested on nine models and four datasets, CISC outperforms self-consistency in nearly all configurations, reducing the required number of reasoning paths by over 40% on average. In addition, we introduce the notion of within-question confidence evaluation, after showing that standard evaluation methods are poor predictors of success in distinguishing correct and incorrect answers to the same question. In fact, the most calibrated confidence method proved to be the least effective for CISC. Lastly, beyond these practical implications, our results and analyses show that LLMs can effectively judge the correctness of their own outputs, contributing to the ongoing debate on this topic.
View details