Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10822 publications
    Productionizing Quantum Mass Production
    Bill Huggins
    Nathan Wiebe
    arXiv for now (2026) (to appear)
    Preview abstract For many practical applications of quantum computing, the slowest and most costly steps involve coherently accessing classical data. We help address this challenge by applying mass production techniques, which can sometimes allow us to perform operations many times in parallel for a cost that is comparable to a single execution[1-3]. We combine existing mass-production results with modern approaches for loading classical data using ``quantum read-only memory.'' We show that quantum mass production techniques offer no benefit when we consider a cost model that focuses purely on the number of non-Clifford gates. However, analyzing the constant factors in a more nuanced cost model, we find that it may be possible to obtain a reduction in cost of an order or magnitude or more for a variety reasonably-sized fault-tolerant quantum algorithms. We present several applications of quantum mass-production techniques beyond naive parallelization, including a strategy for reducing the cost of serial calls to the same data loading step. View details
    FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
    Diganta Misra
    Yanqi Luo
    Anjali Sridhar
    Justine Gehring
    Silvio Soares Ribeiro Junior
    2026
    Preview abstract AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative—but their effectiveness remains underexplored. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI-based agentic frameworks on project-level Java migrations. We benchmark several such frameworks, powered by state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 56.5% of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. By releasing FreshBrew publicly upon acceptance, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization. View details
    Spherical dimension
    Bogdan Chornomaz
    Shay Moran
    Tom Waknine
    2025
    Preview abstract We introduce and study the \emph{spherical dimension}, a natural topological relaxation of the VC dimension that unifies several results in learning theory where topology plays a key role in the proofs. The spherical dimension is defined by extending the set of realizable datasets (used to define the VC dimension) to the continuous space of realizable distributions. In this space, a shattered set of size d (in the VC sense) is completed into a continuous object, specifically a d-dimensional sphere of realizable distributions. The spherical dimension is then defined as the dimension of the largest sphere in this space. Thus, the spherical dimension is at least the VC dimension. The spherical dimension serves as a common foundation for leveraging the Borsuk-Ulam theorem and related topological tools. We demonstrate the utility of the spherical dimension in diverse applications, including disambiguations of partial concept classes, reductions from classification to stochastic convex optimization, stability and replicability, and sample compression schemes. Perhaps surprisingly, we show that the open question posed by Alon, Hanneke, Holzman, and Moran (FOCS 2021) of whether there exist non-trivial disambiguations for halfspaces with margin is equivalent to the basic open question of whether the VC and spherical dimensions are finite together. View details
    Preview abstract The alignment of language models (LMs) with human values increasingly relies on using other LMs as automated judges, or ``autoraters''. However, their reliability is limited by a foundational issue: they are trained on deterministic preference labels, forcing a single ground truth onto tasks that are often subjective, ambiguous, or nuanced. We argue that a truly reliable autorater must learn to model the full distribution of preference defined by a target population. In this paper, we propose a general framework for calibrating probabilistic autoraters to any given preference distribution. We formalize the problem and present two learning methods tailored to different data conditions: direct supervised fine-tuning for dense, probabilistic labels, and a reinforcement learning approach for sparse, binary labels. Our empirical results show that finetuning autoraters with a distribution-matching objective leads to verbalized probability predictions that are better aligned with the target preference distribution, with improved calibration and significantly lower positional bias, all while preserving performance on objective tasks. View details
    Preview abstract In Julia, JuMP is the go-to modelling package for mathematical optimisation. As of this writing, Google's award-winning solvers have not been accessible through JuMP; which offers Julia's ease of use. ORTools.jl is changing this. Julia users will now have access to Google's Glop, CP-SAT, and PDLP solvers through JuMP as provided by the ORTools.jl package. This talk offers an introduction to the features of the package and an overview of the difficulties we encountered. View details
    Balancing AI and Human Insights in Scientific Discovery: Challenges and Guidelines
    Javier García-Martínez
    Pilar Manchon
    Ricardo Vinuesa
    Sergio Hoyas
    The Innovation (2025)
    Preview abstract Recent advancements in large language models (LLMs) have enabled AI systems to autonomously assist in scientific research, from hypothesis generation to laboratory experimentation, transforming how research proposals are written and experiments are designed. Tools like AI "co-scientists" promise to enhance scientific productivity but raise concerns about diminishing human intuition, reinforcing incremental research, and concentrating power among a few entities. As LLMs become increasingly integrated into research processes, there is a risk of reduced creativity, ethical misconduct, and overreliance on AI-driven evaluation systems. To address these challenges, in this article we propose ethical guidelines focusing on transparency, accountability, fairness, and safeguarding transformative research. Ultimately, AI should be used to augment—not replace—human insight in scientific discovery.n View details
    Synthetic Text Generation for Training Large Language Models (LLMs) via Gradient Matching
    Dang Nguyen
    Zeman Li
    Meisam Razaviyayn
    Baharan Mirzasoleiman
    International Conference on Machine Learning (ICML) (2025)
    Preview abstract Synthetic data has the potential to improve the performance, training efficiency, and privacy of real training examples. Nevertheless, existing approaches for synthetic text generation are mostly heuristics and cannot generate human-readable text without compromising the privacy of real data, or provide performance guarantees for training Large Language Models (LLMs). In this work, we propose the first theoretically rigorous approach for generating synthetic human-readable text that provides convergence, performance, and privacy guarantees for fine-tuning LLMs on a target task. To do so, we leverage Alternating Direction Method of Multipliers (ADMM) that iteratively optimizes the embeddings of synthetic examples to match the noisy gradient of the target training or validation data, and maps them to a sequence of text tokens with low perplexity. In doing so, the generated synthetic text guarantees convergence of the model to a close neighborhood of the solution obtained by fine-tuning on real data and preserves their privacy. Experiments on various classification tasks confirm the effectiveness of our proposed approach. Our code is available at https://github.com/BigML-CS-UCLA/GRADMM. View details
    Preview abstract Decoder-based large language models (LLMs) have proven highly versatile, with remarkable successes even on problems ostensibly removed from traditional language generation. One such example is solving regression problems, where the targets are real numbers rather than textual tokens. A common approach to use LLMs on such problems is to perform fine-tuning based on the cross-entropy loss, and use autoregressive sampling at inference time. Another approach relies on fine-tuning a separate predictive head with a suitable loss such as squared error. While each approach has had success, there has been limited study on principled ways of using decoder LLMs for regression. In this work, we compare different prior works under a unified view, and introduce regression-aware fine-tuning(RAFT), a novel approach based on the Bayes-optimal decision rule. We demonstrate how RAFT improves over established baselines on several benchmarks and model families. View details
    Preview abstract Due to the size and complexity of modern large language models (LLMs), it has proven challenging to uncover the underlying mechanisms that models use to solve reasoning problems. For instance, is their reasoning for a specific problem localized to certain parts of the network? Do they break down the reasoning problem into modular components that are then executed as sequential steps as we go deeper in the model? To better understand the reasoning capability of LLMs, we study a minimal propositional logic problem that requires combining multiple facts to arrive at a solution. By studying this problem on Mistral and Gemma models, up to 27B parameters, we illuminate the core components the models use to solve such logic problems. From a mechanistic interpretability point of view, we use causal mediation analysis to uncover the pathways and components of the LLMs' reasoning processes. Then, we offer fine-grained insights into the functions of attention heads in different layers. We not only find a sparse circuit that computes the answer, but we decompose it into sub-circuits that have four distinct and modular uses. Finally, we reveal that three distinct models -- Mistral-7B, Gemma-2-9B and Gemma-2-27B -- contain analogous but not identical mechanisms. View details
    Preview abstract Recently, Chevignard et al proposed a way to factor $n$ bit RSA integers using only $(0.5 + \epsilon)n$ logical qubits. In this paper, I streamline Chevignard's algorithm and estimate its physical cost accounting for the overhead of error correction. I reduce its Toffoli count by more than 100x, and show that this implies a 2048 bit RSA integer could be factored in less than a week using less than one million noisy qubits (compared to 20 million in Gidney+Eker{\aa} 2019). I make the same assumptions as in Gidney+Eker{\aa} 2019: a square grid of qubits with nearest neighbor connections, a gate error rate of $0.1\%$, a surface code cycle time of 1 microsecond, and a control system reaction time of $10$ microseconds. View details
    Preview abstract We consider the problem of auto-bidding in online advertising from the perspective of a single advertiser. The goal of the advertiser is to maximize their value under the Return-on-Spend (RoS) constraint, with performance measured in terms of \emph{regret} against the optimal offline solution that knows all queries a priori. Importantly, the value of the item is \textit{unknown} to the bidder ahead of time. The goal of the bidder is to quickly identify the optimal bid, while simultaneously satisfying budget and RoS constraints. Using a simple UCB-style algorithm, we provide the first result which achieves optimal regret and constraint violation for this problem. View details
    A personal health large language model for sleep and fitness coaching
    Anastasiya Belyaeva
    Zhun Yang
    Nick Furlotte
    Chace Lee
    Erik Schenck
    Yojan Patel
    Jian Cui
    Logan Schneider
    Robby Bryant
    Ryan Gomes
    Allen Jiang
    Roy Lee
    Javier Perez
    Jamie Rogers
    Cathy Speed
    Shyam Tailor
    Megan Walker
    Jeffrey Yu
    Tim Althoff
    Conor Heneghan
    Mark Malhotra
    Leor Stern
    Shwetak Patel
    Shravya Shetty
    Jiening Zhan
    Daniel McDuff
    Nature Medicine (2025)
    Preview abstract Although large language models (LLMs) show promise for clinical healthcare applications, their utility for personalized health monitoring using wearable device data remains underexplored. Here we introduce the Personal Health Large Language Model (PH-LLM), designed for applications in sleep and fitness. PH-LLM is a version of the Gemini LLM that was finetuned for text understanding and reasoning when applied to aggregated daily-resolution numerical sensor data. We created three benchmark datasets to assess multiple complementary aspects of sleep and fitness: expert domain knowledge, generation of personalized insights and recommendations and prediction of self-reported sleep quality from longitudinal data. PH-LLM achieved scores that exceeded a sample of human experts on multiple-choice examinations in sleep medicine (79% versus 76%) and fitness (88% versus 71%). In a comprehensive evaluation involving 857 real-world case studies, PH-LLM performed similarly to human experts for fitness-related tasks and improved over the base Gemini model in providing personalized sleep insights. Finally, PH-LLM effectively predicted self-reported sleep quality using a multimodal encoding of wearable sensor data, further demonstrating its ability to effectively contextualize wearable modalities. This work highlights the potential of LLMs to revolutionize personal health monitoring via tailored insights and predictions from wearable data and provides datasets, rubrics and benchmark performance to further accelerate personal health-related LLM research. View details
    Preview abstract Judging an action’s safety requires knowledge of the context in which the action takes place. To human agents who act in various contexts, this may seem obvious: performing an action such as email deletion may or may not be appropriate depending on the email’s content, the goal (e.g., to erase sensitive emails or to clean up trash), and the type of email address (e.g., work or personal). Unlike people, computational systems have often had only limited agency in limited contexts. Thus, manually crafted policies and user confirmation (e.g., smartphone app permissions or network access control lists), while imperfect, have sufficed to restrict harmful actions. However, with the upcoming deployment of generalist agents that support a multitude of tasks (e.g., an automated personal assistant), we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual agent security (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies. View details
    Preview abstract When large language models (LLMs) use in-context learning (ICL) to solve a new task, they must infer latent concepts from demonstration examples. This raises the question of whether and how transformers represent latent structures as part of their computation. Our work experiments with several controlled tasks, studying this question using mechanistic interpretability. First, we show that in transitive reasoning tasks with a latent, discrete concept, the model successfully identifies the latent concept and does step-by-step concept composition. This builds upon prior work that analyzes single-step reasoning. Then, we consider tasks parameterized by a latent numerical concept. We discover low-dimensional subspaces in the model's representation space, where the geometry cleanly reflects the underlying parameterization. Overall, we show that small and large models can indeed disentangle and utilize latent concepts that they learn in-context from a handful of abbreviated demonstrations. View details
    Shadow Hamiltonian Simulation
    Rolando Somma
    Robbie King
    Tom O'Brien
    Nature Communications, 16 (2025), pp. 2690
    Preview abstract Simulating quantum dynamics is one of the most important applications of quantum computers. Traditional approaches for quantum simulation involve preparing the full evolved state of the system and then measuring some physical quantity. Here, we present a different and novel approach to quantum simulation that uses a compressed quantum state that we call the "shadow state". The amplitudes of this shadow state are proportional to the time-dependent expectations of a specific set of operators of interest, and it evolves according to its own Schrödinger equation. This evolution can be simulated on a quantum computer efficiently under broad conditions. Applications of this approach to quantum simulation problems include simulating the dynamics of exponentially large systems of free fermions or free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. These simulations are hard for classical methods and also for traditional quantum approaches, as preparing the full states would require exponential resources. Shadow Hamiltonian simulation can also be extended to simulate expectations of more complex operators such as two-time correlators or Green's functions, and to study the evolution of operators themselves in the Heisenberg picture. View details
    ×